The NUMEN experiment

European
Commission

Manuela Cavallaro

INFN - Laboratori Nazionali del Sud
(Italy)

XXVI GIORNATE DI STUDIO SUI RIVELATORI

Scuola F. Bonaudi

Cogne, 13-17 February 2017

NUMEN

NUclear Matrix Elements for Neutrinoless double beta decay

Physics case: use of nuclear reactions to extract information of the

 Nuclear Matrix Elements entering in the expression relating the $0 v \beta \beta$ decay half life to the neutrino absolute mass scale$$
\left(T_{1 / 2}^{0 \nu \beta \beta}\left(0^{+} \rightarrow 0^{+}\right)\right)^{-1}=G_{0 \nu \beta \beta}\left|M^{0 \nu \beta \beta}\right|^{2}\left|f\left(m_{i}, U_{e i}\right)\right|^{2}
$$

Pilot experiment (DOCET) performed at INFN-Laboratori Nazionali del Sud in 2012 to test the feasibility

NUMEN proposed within the INFN «What Next» initiative in 2014

NURE project was approved for funding by ERC-Starting Grant in 2016

NUclear Matrix Elements for Neutrinoless double beta decay

TeBe

NUMEN

SiCTLIA

NUMEN

NUclear Matrix Elements for Neutrinoless double beta decay

The collaboration

Spokespersons: F. Cappuzzello and C. Agodi
E. Aciksoz, L. Acosta, C. Agodi, X. Aslanouglou, N. Auerbach, J. Bellone, R. Bijker, S. Bianco, D. Bonanno, D. Bongiovanni, T. Borello, I. Boztosun, V. Branchina, M.P. Bussa, L. Busso, S. Calabrese, L. Calabretta, A. Calanna, D. Calvo, F. Cappuzzello, D. Carbone, M. Cavallaro, E.R. Chávez Lomelí, M. Colonna, G. D’Agostino, N. Deshmuk, P.N. de Faria, C. Ferraresi,
J.L. Ferreira, P. Finocchiaro, A. Foti, G. Gallo, U. Garcia, G. Giraudo, V. Greco, A. Hacisalihoglu, J. Kotila, F. Iazzi, R. Introzzi, G. Lanzalone, A. Lavagno, F. La Via, J.A. Lay, H. Lenske, R. Linares, G. Litrico, F. Longhitano, D. Lo Presti, J. Lubian, N. Medina, D. R. Mendes, A. Muoio, J. R. B. Oliveira,
A. Pakou, L. Pandola, H. Petrascu, F. Pinna, F. Pirri, S. Reito,
D. Rifuggiato, M.R.D. Rodrigues, A. Russo, G. Russo,
G. Santagati, E. Santopinto, O. Sgouros, S.O. Solakc1,
G. Souliotis, V. Soukeras, S. Tudisco, R.I.M. Vsevolodovna, R. Wheadon, V. Zagatto

Italy, Brazil, Greece, México, Germany, Turkey, Israel, Romania, Spain

Italy, Brazil, Grece, México, Germany, Turkey, Israel, Romania, Spain
73 members, 9 countries
In Italy: LNS, Catania, Torino, Genova

NUMEN is a challenging program

Experiments
with the MAGNEX
spectrometer

Nuclear reaction theory

LNS, Genova,
Germany, Spain, Israel

Upgrade of the LNS
accelerator and beam lines

R\&D on new technologies

- Detectors
- Reaction target
- Mechanics

Romania, Mexico

Outlook

- Large acceptance magnetic spectrometry]
- The MAGNEX spectrometer at INFN-LNS
- The physics case
- The NUMEN program

Magnetic spectrometry

Main Concepts

The study of the motion of charged particles through a magnetic field is a well established technique to explore the microscopic structure of the matter.

4 Average motion and the concept of beam

4 Analogy between beam and light ray

* Optics of charged particle beams and aberrations

Magnetic spectrometry: Using static magnetic fields to learn about

 microscopic world$$
F=q v B=m \frac{v^{2}}{\rho} \quad \begin{gathered}
\text { If } \quad \vec{v} \perp \vec{B} \text { and } \vec{B} \text { is uniform } \\
\text { curvature radius } \\
\begin{array}{c}
\text { Macroscopic } \\
\text { world }
\end{array}
\end{gathered}
$$

- If \mathbf{B} is known, a measurement of ρ corresponds to a measurement of p / q
* If also \mathbf{q} is known (by supplementary detectors) one gets information about \mathbf{p} (momentum spectrometry)
* If also the velocity of the particle is known, one directly accesses its mass (mass spectrometry)

Some historical background

At least 6 Nobel prizes in physics and chemistry have been awarded to now for studies connected to magnetic spectrometry

1903 - Marie Skłodowska Curie and Pierre Curie for their joint researches on the radiation phenomena

1906 - Joseph John Thomson

investigations on the conduction of electricity by gases

2002 - JOHN B. FENN and KOICHI TANAKA
for their development of soft desorption ionisation methods for mass spectrometric analyses of biological macromolecules

1922 - Francis William Aston
for his discovery, by means of his mass spectrograph, of isotopes

1989 - Wolfgang Paul for the development of the ion trap technique

Magnetic spectrometry and nuclear reactions

Nuclear physics has taken profit by the use of magnets to select and detect the charged particles emitted in a nuclear reaction

* Nuclear reactions produce fragments (charged particles) and radiation (γ-rays)
* Fragments carry the elementary information of the structure of colliding nuclei and of the reaction mechanism

Looking for fragments

what, at what angle and at what energy?

Magnetic spectrometers can provide extremely clean information about fragments thanks to their properties:

Selectivity:

- Typically $10^{9=11}$ nuclei/sec (beam intensity) colliding against $10^{16=18}$ nuclei/ cm^{2} (target thickness)
- Studying a particular reaction is how to look for a needle in a haystack
- Effective suppression of unwanted background

$$
B \rho=\frac{p}{q}
$$

- Possibility to measure at very forward angles (zero-degree) where clearest spectroscopic information

Resolution:

- Both in mass and momentum
(measuring positions instead of energies)

Some analogy

Deflection depending on the frequency

Transform frequency or p/q intervals in positions

Dispersive elements

Some analogy

Convergent and divergent lens

Magnetic quadrupole

Light spectrometer

Magnetic spectrometer

focus depends on p / q

Advantages of conventional magnetic spectrometry

\& Good selection of reaction products

* Possibility to measure near 0°
* High momentum and mass resolution

Magnetic spectrometers quickly became essential tools in nuclear physics laboratories.
Different layouts have been established, depending on the optimization of one of these functions.

Examples of magnetic spectrometers

High resolution $\Delta \mathrm{p} / \mathrm{p}=1 / 10000, \Delta \mathrm{p} / \mathrm{p}=1 / 38000$ Low acceptance <10 msr Light ions (p, d, 3 He)

Necessity to go towards large acceptance

- To detect rare processes (products of reactions induced by radioactive ion beams or characterized by low cross-sections)
- Large momentum phase space in a unique setting

Examples of large acceptance magnetic spectrometers

Large acceptance 50 msr Heavier ions
Resolution??

Large acceptance and aberrations

 चD D B OG ∞ ••• ω^{∞} ∞ © . . . ∞° \triangle © : AG D D日 - Q Q BDOQQQब

(Q ${ }^{\text {a }}$ Q 0
(a)
(a)a...
- $)^{\prime}$ d b
$\theta \Leftrightarrow \theta \theta \theta \theta$

The large acceptance problem

Small acceptance
pointlike source

pointlike image common focus

Large acceptance

broad image
aberrations
arch ray has its own
trajectory focus not
anymore a useful

The large acceptance problem

The motion of a charged particle beam, under the action of magnetic fields, can be described as the dynamical evolution of the representative hyper-volume

$$
\boldsymbol{H}_{\bullet} \quad \overrightarrow{\mathbf{X}}_{\mathbf{i}} \quad \rightarrow \quad{\overrightarrow{\mathbf{X}_{\mathbf{f}}}}^{\square}
$$

$$
】
$$

Taylor expansion

$$
x_{i}(f)=\sum_{j} R_{i j} x_{j}(i)+\sum_{j, k} T_{i k} x_{j}(i) x_{k}(i)+\ldots .
$$

Aberrations
\boldsymbol{F} transport matrix
$\mathbf{X}_{\mathrm{i}}=\left(x_{i}, \theta_{i}, y_{i}, \varphi_{i}, l_{i}, \delta_{i}\right)$
$\mathbf{X}_{\mathrm{f}}=\left(x_{f}, \theta_{f}, y_{f} \varphi_{f} l_{f}, \delta_{f}\right)$
x, θ, y, ϕ horizontal and vertical coordinates and angles at the impact point of the ion trajectory with a plane normal to the central trajectory,
l trajectory length
$\delta=\left(p-p_{0}\right) / p_{0}$, is the fractional momentum, where p_{0} is the reference momentum and p is the actual one.

The large acceptance problem

$$
x_{i}(f)=\sum_{j} R_{i j} x_{j}(i)+\sum_{i, k} T_{i j k} x_{j}(i) x_{k}(i)+\ldots . .
$$

Aberrations

First order matrix elements:

$$
(a \mid b)=\frac{\partial a_{f}}{\partial b_{i}}
$$

Natural recipes for large acceptance: Human versus fly eyes

Large acceptance optical devices:

* Many small lenses in the fly versus a unique large one for man.
* Strong aberrations for us.
* Aberrations greatly compensated by brain reconstruction of the image
* Reconstruction based on neural networks and a long learning step
* What about a "clever" spectrometer?

Clever Spectrometers

Tracking instead of focusing

Spectrometer reconstructing a net image by an optically aberrated one

The MAGNEX spectrometer

The LNS laboratory in Catania

Superconducting cyclotron K800

- Accelerating ion beams from proton to Uranium at energy up to $80 \mathrm{MeV} / \mathrm{A}$
- Superconducting magnets with Niobium-Titanium coils in liquid Helium at 4.2 K

MAGNEX: a large acceptance QD spectrometer

* The Quadrupole: vertically focusing
(Aperture radius 20 cm , effective length 58 cm . Maximum field strength $5 \mathrm{~T} / \mathrm{m}$)
* The Dipole: momentum dispersion (and horizontal focus)
(Mean bend angle 55°, radius 1.60 m . Maximum field $\sim 1.15 \mathrm{~T}$)
* The surface coils, located between the dipole pole faces and the inner high vacuum chamber, giving tunable quadrupolar and sextupolar corrections

Quadrupole
Dipole
Scattering Chamber

Focal Plane Detector

MAGNEX characteristics

Measured resolution:
 Energy $\Delta \mathrm{E} / \mathrm{E} \sim 1 / 1000$
 Angle $\Delta \theta \sim 0.3^{\circ}$
 Mass $\Delta \mathrm{m} / \mathrm{m} \sim 1 / 160$

We have measured in a wide mass range (from protons to medium-mass nuclei)

Optical characteristics

Angular acceptance (Solid angle)

Angular range

Momentum (energy) acceptance
Momentum dispersion for $\mathrm{k}=\mathbf{- 0 . 1 0 4}$ ($\mathbf{c m} / \%$)
Maximum magnetic rigidity

Measured values

50 msr
$-20^{\circ}-+85^{\circ}$
$-14 \%+10 \%(-28 \%+20 \%)$
3.68
1.8 Tm

The large acceptance problem

$\boldsymbol{F}: \overrightarrow{\mathbf{X}}_{\mathbf{i}} \rightarrow \overrightarrow{\mathbf{X}}_{\mathbf{f}} \quad F$ transport matrix

Large acceptance

Aberrations

$$
x_{i}(f)=\sum_{j} R_{i j} x_{j}(i)+\sum_{j, k} T_{i j k} x_{j}(i) x_{k}(i)+\ldots . \quad \text { Up to } 10^{\circ} \text { order }
$$

Careful hardware design (to minimize the aberrations)

Software ray-reconstruction (to know the aberrations)

Hardware minimisation of aberrations

- Rotation of the focal plane detector of 59°
- Shift of the focal plane detector

Hardware minimisation of aberrations

- Introduction of surface coils in the dipole pole tips

- Shaping of dipole entrance and exit boundaries ($8^{\text {th }}$ order polynomial)

Hardware minimisation of aberrations

The large acceptance problem

$\boldsymbol{F}: \overrightarrow{\mathbf{X}}_{\mathbf{i}} \rightarrow \overrightarrow{\mathbf{X}}_{\mathbf{f}} \quad F$ transport matrix

Large acceptance

Aberrations

$$
x_{i}(f)=\sum_{j} R_{i j} x_{j}(i)+\sum_{j, k} T_{i j k} x_{j}(i) x_{k}(i)+\ldots . \quad \text { Up to } 10^{\circ} \text { order }
$$

Careful hardware design (to minimize the aberrations)

Software ray-reconstruction (to know the aberrations)

Software ray-reconstruction

ALGEBRIC RAYRECONSTRUCTION

\checkmark Solution of the equation of motion for each detected particle
\checkmark Inversion of the transport matrix
\checkmark Application to the final measured parameters

$$
\stackrel{\text { Inversion of the transport matrix }}{F^{-1}: \overrightarrow{\mathbf{X}}_{\mathbf{f}} \rightarrow \overrightarrow{\mathbf{X}}_{\mathbf{i}}}
$$

1) Detailed knowledge of the geometry and magnetic field

1) Detailed knowledge of the magnetic field

Measurement of the field (3D map)

Measurements at Danfysik 240000 points
2 months (night and day)

Interpolation of the field

Regular function up to 10° order
A.Lazzaro et al., NIMA 570 (2007) 192
A.Lazzaro et al., NIMA 585 (2008) 136
A.Lazzaro et al., NIMA 591 (2008) 394
A.Lazzaro et al., NIMA 602 (2009) 494

Software ray-reconstruction

ALGEBRIC RAYRECONSTRUCTION

\checkmark Solution of the equation of motion for each detected particle
\checkmark Inversion of the transport matrix
\checkmark Application to the final measured parameters

1) Detailed knowledge of the geometry and magnetic field

2) High resolution measurement at the focal plane (highly performing detectors)

2) MAGNEX Focal Plane Detector

Two tasks to accomplish:

1) High resolution measurement at the focal plane of the phase space parameters ($X_{f o c}, Y_{f o c}, \theta_{f o c}, \phi_{f o c}$)
2) Identification of the reaction ejectiles (Z, A) crucial aspect for heavy ions

Hybrid detector:
Gas section: proportional wires and drift chambers

Stopping wall of silicon detectors

${ }_{\varepsilon}^{4} \quad$ 2) MAGNEX Focal Plane Detector Wire-based detector
 $E_{\text {threshold }}$

Properties:

- Flexible geometry and large area ($\sim^{2}{ }^{2}$)
- Cheap
- Many well developed position encoding methods
- Works in magnetic field
- Electron avalanche multiplication (Gain) $\approx 10^{4}-10^{5}$
- Position resolution \rightarrow down to $100 \mu \mathrm{~m}$ for 1 mm wire spacing (limited in size)
- Rate capability $\approx 10^{4} \mathrm{~Hz} / \mathrm{mm}^{2}$

2) MAGNEX Focal Plane Detector

Large volume: 1360 mm X 200 mm X 96 mm

Wall of 60 stopping $7 \times 5 \mathrm{~cm}^{2}$ Silicon detectors Covered area $100 \times 20 \mathrm{~cm}^{2}$ Thickness 500-1000 $\mu \mathrm{m}$

Section view
M.Cavallaro et al. EPJA 48: 59 (2012)
D. Carbone et al. EPJA 48: 60 (2012)

Induction
Pads

Particle Identification

F. Cappuzzello et al., NIMA 621 (2010) 419

Zidentification
A identification

Mass resolution $\Delta \mathrm{m} / \mathrm{m} \sim 1 / 160$

MAGNEX FPD characteristics

Horizontal and vertical position resolution (FWHM)	0.6 mm
Horizontal and vertical angular resolution (FWHM)	0.3°
Mass resolution ${ }^{(\mathrm{a})}$	0.6%
Explored ion mass range	from $A=1$ to $A=48$
Energy loss resolution ${ }^{(\mathrm{b})}$	6.3%
Maximum incident ion rate (uniform distribution)	5 kHz
Maximum incident ion rate (localized in $\sim 1 \mathrm{~cm}$)	$2 \mathrm{kHz} \longrightarrow$For O at 300 MeV $10^{4} \mathrm{~Hz} / \mathrm{mm}^{2}$

Software ray-reconstruction

ALGEBRIC RAYRECONSTRUCTION

\checkmark Solution of the equation of motion for each detected particle
\checkmark Inversion of the transport matrix
\checkmark Application to the final measured parameters

1) Detailed knowledge of the geometry and magnetic field

Inversion of the transport matrix
3) Algorithm to transport and invert

2) High resolution measurement at the focal plane (highly performing detectors)

3) Algorithm to transport and invert

ALGEBRIC

RAY-RECONSTRUCTION
(Differential Algebras) COSY-INFINITY

Solution of the equation of motion for each detected particle

F. Cappuzzello, et al., NIM A 638, (2011) 74

3) Algorithm to transport and invert

Examples of parameters at the focal plane

Black: measured parameters
Red: Simulated parameters

3) Algorithm to transport and invert

Effect of high order aberrations

3) Algorithm to transport and invert

ALGEBRIC RAY-RECONSTRUCTION (Differential Algebras) COSY-INFINITY

Solution of the equation of motion for each detected particle

F. Cappuzzello, et al., NIM A 638, (2011) 74

3) Algorithm to transport and invert

High order aberrations!

3) Algorithm to transport and invert

M. Cavallaro et al., NIMA 648 (2011) 46-51
F. Cappuzzello et al., NIMA 638 (2011) 74-82

Typical energy spectra

${ }^{12} \mathrm{C}\left({ }^{18} \mathrm{O},{ }^{16} \mathrm{O}\right){ }^{14} \mathrm{C}$

${ }^{13} \mathrm{C}\left({ }^{18} \mathrm{O},{ }^{16} \mathrm{O}\right){ }^{15} \mathrm{C}$

3-peaks α-source ${ }^{241} \mathrm{Am}+{ }^{239} \mathrm{Pu}+{ }^{244} \mathrm{Cm}$

3) Algorithm to transport and invert

Typical angular distribution

$$
{ }^{18} \mathrm{O}+{ }^{12} \mathrm{C}_{\text {g.s. }}\left(\mathrm{O}^{+}\right) \rightarrow^{18} \mathrm{O}+{ }^{14} \mathrm{C}_{\text {g.s. }}\left(\mathrm{O}^{+}\right) \quad L=0
$$

MAGNEX FPD characteristics

Horizontal and vertical position resolution (FWHM)	0.6 mm
Horizontal and vertical angular resolution (FWHM)	0.3°
Mass resolution ${ }^{(\mathrm{a})}$	0.6%
Explored ion mass range	from $A=1$ to $A=48$
Energy loss resolution ${ }^{(\mathrm{b})}$	6.3%
Maximum incident ion rate (uniform distribution)	5 kHz
Maximum incident ion rate (localized in $\sim 1 \mathrm{~cm}$)	$2 \mathrm{kHz} \longrightarrow$For O at 300 MeV $10^{4} \mathrm{~Hz} / \mathrm{mm}^{2}$

The NUMEN experiment

European
Commission

Manuela Cavallaro

INFN - Laboratori Nazionali del Sud
(Italy)

XXVI GIORNATE DI STUDIO SUI RIVELATORI

Scuola F. Bonaudi

Cogne, 13-17 February 2017

Advantages of magnetic spectrometry

* Good selection of reaction products
$\$$ Possibility to measure near 0°
* High momentum and mass resolution

MAGNEX: a large acceptance QD spectrometer

* The Quadrupole: vertically focusing
(Aperture radius 20 cm , effective length 58 cm . Maximum field strength $5 \mathrm{~T} / \mathrm{m}$)
* The Dipole: momentum dispersion (and horizontal focus)
(Mean bend angle 55°, radius 1.60 m . Maximum field $\sim 1.15 \mathrm{~T}$)
* The surface coils, located between the dipole pole faces and the inner high vacuum chamber, giving tunable quadrupolar and sextupolar corrections

Quadrupole
Dipole
Scattering Chamber

Focal Plane Detector

The large acceptance problem

$\boldsymbol{F}: \overrightarrow{\mathbf{X}}_{\mathbf{i}} \rightarrow \overrightarrow{\mathbf{X}}_{\mathbf{f}} \quad F$ transport matrix

Large acceptance

Aberrations

$$
x_{i}(f)=\sum_{j} R_{i j} x_{j}(i)+\sum_{j, k} T_{i j k} x_{j}(i) x_{k}(i)+\ldots . \quad \text { Up to } 10^{\circ} \text { order }
$$

Careful hardware design (to minimize the aberrations)

Software ray-reconstruction (to know the aberrations)

3) Algorithm to transport and invert

ALGEBRIC

RAY-RECONSTRUCTION
(Differential Algebras) COSY-INFINITY

Solution of the equation of motion for each detected particle

F. Cappuzzello, et al., NIM A 638, (2011) 74

3) Algorithm to transport and invert

ALGEBRIC RAY-RECONSTRUCTION (Differential Algebras) COSY-INFINITY

Solution of the equation of motion for each detected particle

F. Cappuzzello, et al., NIM A 638, (2011) 74

3) Algorithm to transport and invert

M. Cavallaro et al., NIMA 648 (2011) 46-51
F. Cappuzzello et al., NIMA 638 (2011) 74-82

Typical energy spectra

${ }^{12} \mathrm{C}\left({ }^{18} \mathrm{O},{ }^{16} \mathrm{O}\right){ }^{14} \mathrm{C}$

${ }^{13} \mathrm{C}\left({ }^{18} \mathrm{O},{ }^{16} \mathrm{O}\right){ }^{15} \mathrm{C}$

3) Algorithm to transport and invert

Typical angular distribution

$$
{ }^{18} \mathrm{O}+{ }^{12} \mathrm{C}_{\text {g.s. }}\left(\mathrm{O}^{+}\right) \rightarrow^{18} \mathrm{O}+{ }^{14} \mathrm{C}_{\text {g.s. }}\left(\mathrm{O}^{+}\right) \quad L=0
$$

Nuclear Reactions for Neutrinoless Double Beta Decay

Ov $\beta \beta$ decay

Open problem in modern physics:
Neutrino absolute mass scale Neutrino nature
$0 v \beta \beta$ is considered the
most promising approach
${ }_{Z}^{A} X_{N} \rightarrow \underset{Z+2}{A} Y_{N-2}+2 e^{-}+(2 \bar{v})$
Beyond standard model

${ }^{76} \mathrm{Br}$	${ }^{77} \mathrm{Br}$	${ }^{78} \mathrm{Br}$	${ }^{79} \mathrm{Br}$	${ }^{80} \mathrm{Br}$
${ }^{75} \mathrm{Se}$	${ }^{76} \mathrm{Se}$	${ }^{77} \mathrm{Se}$	${ }^{78} \mathrm{Se}$	${ }^{79} \mathrm{Se}$
${ }^{74} \mathrm{As}$	${ }^{75} \mathrm{As}$	${ }^{76} \mathrm{As}$	${ }^{77} \mathrm{As}$	${ }^{78} \mathrm{As}$
${ }^{73} \mathrm{Ge}$	${ }^{74} \mathrm{Ge}$	${ }^{75} \mathrm{Ge}$	${ }^{76} \mathrm{Ge}$	${ }^{77} \mathrm{Ge}$
${ }^{72} \mathrm{Ga}$	${ }^{73} \mathrm{Ga}$	${ }^{74} \mathrm{Ga}$	${ }^{75} \mathrm{Ga}$	${ }^{76} \mathrm{Ga}$

\checkmark Process mediated by the weak interaction
\checkmark Occurring in even-even nuclei where the single β-decay is energetically forbidden

Experiment	Isotope	Lab	Status
GERDA	${ }^{76} \mathrm{Ge}$	LNGS [Italy]	Operational
CUORE	${ }^{130} \mathrm{Te}$	LNGS [Italy]	Construction
Majorana	${ }^{76} \mathrm{Ge}$	SURF [USA]	Construction
KamLAND-Zen	${ }^{136} \mathrm{Xe}$	Kamioka [Japan]	Operational
EXO/nEXO	${ }^{136} \mathrm{Xe}$	WIPP [USA]	Operational
SNO+	${ }^{130} \mathrm{Te}$	Sudbury [Canada]	Construction
SuperNEMO	${ }^{82} \mathrm{Se}$ (or others)	LSM [France]	R\&D
CANDLES	${ }^{48} \mathrm{Ca}$	Kamioka [Japan]	R\&D
COBRA	${ }^{116} \mathrm{Cd}$	LNGS [Italy]	R\&D
Lucifer	${ }^{82} \mathrm{Se}$	LNGS [Italy]	R\&D
DCBA	many	[Japan]	R\&D
AMoRe	${ }^{100} \mathrm{Mo}$	[Korea]	R\&D
MOON	${ }^{100} \mathrm{Mo}$	[Japan]	R\&D

List not complete...

Nuclear Matrix Elements

Ov $\beta \beta$ decay half-life

$$
\left(T_{1 / 2}^{0 \vee \beta \beta}\left(0^{+} \rightarrow 0^{+}\right)\right)^{-1}=G_{0 \nu \beta \beta}\left|M^{0 \nu \beta \beta}\right|^{2}\left|f\left(m_{i}, U_{e i}\right)\right|^{2}
$$

contains the average neutrino mass

Nuclear Matrix Element (NME)

$$
\left.\left|M_{\varepsilon}^{0 \nu \beta \beta}\right|^{2}=\left|\left\langle\Psi_{f}\right| \hat{O}_{\varepsilon}^{0 \nu \beta \beta}\right| \Psi_{i}\right\rangle\left.\right|^{2}
$$

Transition probability of a nuclear process

Nuclear physics plays a key role!

Nuclear Matrix Elements

Nuclear Matrix Element (NME)

$$
\left.\left|M_{\varepsilon}^{0 v \beta \beta}\right|^{2}=\left|\left\langle\Psi_{f}\right| \hat{O}_{\varepsilon}^{0 v \beta \beta}\right| \Psi_{i}\right\rangle\left.\right|^{2}
$$

$$
M^{(0 \nu)}=M_{G T}^{(0 \nu)}-\left(\frac{g_{V}}{g_{A}}\right)^{2} M_{F}^{(0 \nu)}+M_{T}^{(0 \nu)}
$$

Calculations (still sizeable uncertainties): QRPA, Large scale shell model, IBM, EDF ...
E. Caurier, et al., PRL 100 (2008) 052503
N. L. Vaquero, et al., PRL 111 (2013) 142501
J. Barea, PRC 87 (2013) 014315
T. R. Rodriguez, PLB 719 (2013) 174
F.Simkovic, PRC 77 (2008) 045503.

The idea

Is there an experimental way to access the NME?

The ERC project NURE:

Nuclear reactions
Double Charge Exchange reactions (DCE) to stimulate in the laboratory the same nuclear transition occurring in $0 v \beta \beta$

Ov $\beta \beta$ vs HI-DCE

Differences

- DCE mediated by strong interaction, $0 v \beta \beta$ by weak interaction
- DCE includes sequential transfer mechanism

Similarities

- Same initial and final states: Parent/daughter states of the $0 \nu \beta \beta$ decay are the same as those of the target/residual nuclei in the DCE
- Similar operator: Short-range Fermi, Gamow-Teller and rank-2 tensor components are present in both the transition operators, with tunable weight in DCE
- Large linear momentum ($\sim 100 \mathrm{MeV} / \mathrm{c}$) available in the virtual intermediate channel
- Non-local processes: characterized by two vertices localized in a pair of valence nucleons
- Same nuclear medium: Constraint on the theoretical determination of quenching phenomena on $0 \vee \beta \beta$
- Off-shell propagation through virtual intermediate channels

The project

NURE plans to measure the absolute cross section of HI-DCE reactions on nuclei candidates for $0 v \beta \beta$ and to extract «data-driven» NME

The extraction of nuclear structure information from measured cross sections is not trivial but feasible (result of decades of nuclear physics)
e.g. for single charge-exchange: NME extracted within

2-5\% accuracy by proportionality relation

$$
\frac{d \sigma}{d \Omega}(q, \omega)=\hat{\sigma}\left(E_{p}, A\right) F(q, \omega) \operatorname{NME}(\alpha)\left\{\begin{array}{l}
E_{p} \text { incident energy } \\
q \text { momentum transfer } \\
\omega \text { excitation energy }
\end{array}\right.
$$

erc

The project

- Only two transitions of interest for $0 \mathrm{v} \beta \beta$:
${ }^{76} \mathrm{Ge} \leftrightarrow{ }^{76} \mathrm{Se}$ and ${ }^{116} \mathrm{Cd} \leftrightarrow{ }^{116} \mathrm{Sn}$
GERDA, MAJORANA, COBRA
- Two directions:
$\beta \beta^{+}$via $\left({ }^{18} \mathrm{O},{ }^{18} \mathrm{Ne}\right)$ and $\beta \beta^{-}$via $\left({ }^{20} \mathrm{Ne},{ }^{20} \mathrm{O}\right)$
- Complete net of reactions which can contribute to the DCE cross-section:
1 p -, 2p-, 1n-, 2 n -transfer, single cex, DCE
- Two (or more) incident energies to study the reaction mechanism

The context

Weak interaction probes
 $\beta, 2 v \beta \beta$, μ-capture, v-nucleus scattering, ...

Single charge-exchange reactions induced by light ions (${ }^{3} \mathrm{He}, \mathrm{t}$), ($\mathrm{d},{ }^{2} \mathrm{He}$), ...

Interesting for β-decay and $2 v \beta \beta$!

Other researches

 to extract information on NME from experimental data and/or constrain the theory

Heavy-ion induced double charge-exchange limited in the past due to low cross-sections

Renewed interest (RIKEN, Osaka) but low resolution ($\sim 1.5 \mathrm{MeV}$)

The pilot experiment

${ }^{40} \mathrm{Ca}\left({ }^{18} \mathrm{O},{ }^{18} \mathrm{Ne}\right){ }^{40} \mathrm{Ar} @ 270 \mathrm{MeV}$

Catania
$>{ }^{18} \mathrm{O}^{7+}$ beam from Cyclotron at $270 \mathrm{MeV}(10 \mathrm{pnA}, 3300 \mu \mathrm{C}$ in 10 days $)$
$>{ }^{40} \mathrm{Ca}$ target $300 \mu \mathrm{~g} / \mathrm{cm}^{2}$
$>$ Ejectiles detected by the MAGNEX spectrometer $0^{\circ}<\vartheta_{l a b}<10^{\circ}$ corresponding to a momentum transfer ranging from $0.17 \mathrm{fm}^{-1}$ to $2.2 \mathrm{fm}^{-1}$

Zero-degree measurement

$$
\begin{gathered}
\Theta_{\text {MAGNEX }}=+4^{\circ} \\
-1^{\circ}<\theta_{\text {Iab }}<+10^{\circ}
\end{gathered}
$$

Faraday-cup

$$
\hat{N O}_{0}
$$

The pilot experiment

${ }^{18} \mathrm{O}+{ }^{40} \mathrm{Ca}$ at 270 MeV

- Experimental feasibility: zero-deg, resolution (500 keV), low cross-section ($\mu \mathrm{b} / \mathrm{sr}$) Limitations of the past HI-DCE experiments are overcome!
- Data analysis feasibility: the analysis of the DCE cross-section has lead to NME compatible with the existing calculations
F. Cappuzzello, et al., Eur. Phys. J. A (2015) 51:145

Preliminary NME extraction

In the lack of «real» theory...

$$
\begin{aligned}
& \text { Under the hypothesis of validity of the factorization } \\
& \frac{d \sigma}{d \Omega_{D C E}}(q, \omega)=\hat{\sigma}_{\alpha}^{D C E}\left(E_{p}, A\right) F_{\alpha}^{D C E}(q, \omega) B_{T}^{D C E}(\alpha) B_{P}^{D C E}(\alpha)
\end{aligned}
$$

$$
\left|M\left({ }^{40} \mathrm{Ca}\right)\right|^{2}=0.37 \pm 0.18
$$

Just to speculate:
removing Pauli blocking one can roughly estimate

$$
\left|M^{0 \nu \beta \beta}\left({ }^{28} \mathrm{Ca}\right)\right|^{2}=2.6 \pm 1.3
$$

Pauli blocking about 0.14 for F and GT

A broader view

Limitations of NURE:
$>$ Only two systems can be studied in 5 years (due to the low cross-sections)
$>$ A more accurate job on the theory is needed

The NUMEN program

A broader view

The NUMEN project

NUclear Matrix Elements for Neutrinoless double beta decay

The NUMEN project

NUclear Matrix Elements for Neutrinoless double beta decay

The collaboration

Spokespersons: F. Cappuzzello and C. Agodi
E. Aciksoz, L. Acosta, C. Agodi, X. Aslanouglou, N. Auerbach,
J. Bellone, R. Bijker, S. Bianco, D. Bonanno, D. Bongiovanni,
T. Borello, I. Boztosun, V. Branchina, M.P. Bussa, L. Busso,
S. Calabrese, L. Calabretta, A. Calanna, D. Calvo,
F. Cappuzzello, D. Carbone, M. Cavallaro, E.R. Chávez Lomelí, M. Colonna, G. D'Agostino, N. Deshmuk, P.N. de Faria, C. Ferraresi, J.L. Ferreira, P. Finocchiaro, A. Foti, G. Gallo, U. Garcia,
G. Giraudo, V. Greco, A. Hacisalihoglu, J. Kotila, F. Iazzi, R. Introzzi, G. Lanzalone, A. Lavagno, F. La Via, J.A. Lay, H. Lenske, R. Linares, G. Litrico, F. Longhitano, D. Lo Presti, J. Lubian, N. Medina, D. R. Mendes, A. Muoio, J. R. B. Oliveira, A. Pakou, L. Pandola, H. Petrascu, F. Pinna, F. Pirri, S. Reito, D. Rifuggiato, M.R.D. Rodrigues, A. Russo, G. Russo, G. Santagati, E. Santopinto, O. Sgouros, S.O. Solakc1, G. Souliotis, V. Soukeras, S. Tudisco, R.I.M. Vsevolodovna,
 R. Wheadon, V. Zagatto

The Goals of the Research Program

Main goal (Holy Graal):

Extraction from measured cross-sections of "datadriven" information on NME for all the systems candidate for $0 v \beta \beta$

Secondary goals:

- Constraints to the existing theories of NMEs
- Model-independent comparative information on the sensitivity of half-life experiments
- Complete study of the reaction mechanism

A broader view

The NUMEN project

NUclear Matrix Elements for Neutrinoless double beta decay
>Phase1: The experimental feasibility (completed)
$>$ Phase2: Experimental exploration of few cases (NURE) and work on theory (running until 2021)
$>$ Phase3: Facility upgrade (Cyclotron, MAGNEX, beam line, ...) to work with two orders of magnitude more intense beam

PPhase4: Systematic experimental campaign on all the systems with the upgraded facility

Upgrade of LNS facilities: The CS accelerator

- CS accelerator current (from 100 W to $5-10 \mathrm{~kW}$);

From electrostatic extraction
(low efficiency 50\%) to extraction by stripping (>99\%)

- beam transport line transmission efficiency to nearly 100%

Beam dump inside the MAGNEX hall

Beam dump inside the MAGNEX hall

Present MAGNEX hall

Future MAGNEX hall

Beam dump inside the MAGNEX hall

From S. Russo (LNS radioprotection service)

Upgrade of the MAGNEX Focal Plane Detector

Large volume: 1360 mm X 200 mm X 96 mm

Wall of 60 stopping $7 \times 5 \mathrm{~cm}^{2}$ Silicon detectors
Covered area $100 \times 20 \mathrm{~cm}^{2}$
Thickness 500-1000 $\mu \mathrm{m}$

Hybrid detector:
Gas section: proportional wires and drift chambers
$+$
Stopping wall of silicon detectors

NUMEN

 븝붑
 Upgrade of the MAGNEX FPD: Gas Tracker

Present:

wire-based gas tracker
Low pressure (10-100 mbar) Rate limit few KHz

Induction

Gaseous detectors

Gaseous detectors: why?

Multi-Wire Proportional Chamber -MWPC

- good stability, robustness and aging compared to solid/liquid detectors
- good space and moderate energy resolution
- three dimensional readout/flexible geometry
- cheap
- still today the only choice whenever largearea coverage with low material budget is required

Limits of wire-based detectors

Wire-Based Detector:
 Secondary effects \rightarrow Gain limits Space charge \rightarrow Counting-rate limits ($10^{4} \mathrm{~Hz} / \mathrm{mm}^{2}$)
 Aging \rightarrow Damage after long-term operation

Wire spacing $\rightarrow 1-2 \mathrm{~mm}$

New Idea:

Move down in size \& add cathodes very close to anodes to evacuate ions produced during the avalanche process

Micro-Pattern Gaseous Detector

GAS ELECTRON MULTIPLIER

.... and many others
From M. Cortesi

Micro-strip gas chamber (MSGC)

Gas Electron Multiplier (GEM)

Thin metal-coated polymer (Kapton) foil chemically pierced by a high density of holes

Confined avalanche within holes
\rightarrow Lesser photon-

mediated secondary effects

Properties:

- Large area
- High rate (up to $1 \mathrm{MHz} / \mathrm{mm}^{2}$)
- High Spatial Resolution ($\approx 40 \mu \mathrm{~m}$)
- High gas gain ($\sim 10^{3}-10^{4}$ single-stage, $10^{6}-10^{7}$ multi-stage)
- 15-20\% energy resolution (5.9 keV X-rays)
- Flexible detector shape and readout patterns

Thick-Gas Electron Multiplier (THGEM)

Manufactured by standard PCB techniques of precise drilling in
G-10/FR-4 (and other materials) and Cu etching Simple \& Robust

- Effective single-electron detection
- High gas gain $\sim 10^{5}\left(>10^{6}\right)$ @ single (double) THGEM
- Few-ns RMS time resolution
- Sub-mm position resolution
- $\mathrm{MHz} / \mathrm{mm}^{2}$ rate capability
- Cryogenic operation: OK
- Gas: molecular and noble gases
- Pressure: 1mbar - few bar

Operation of THGEM in low-pressure,

 "pure" Noble Gas

Large maximum achievable gain at low pressure due to:

1) Extended avalanche volume (larger than the e- mean free path)
\rightarrow high e- multiplication
2) Avalanche confinement within the hole
\rightarrow Lesser photon-mediated secondary effects
From M. Cortesi

Upgrade of the MAGNEX FPD: The Particle Identification

A radiation tolerant stopping wall for particle identification

> Radiation hardness \rightarrow expected 10^{14} ions in ten years activity (silicon detector dead at 10^{9} implanted ions $/ \mathrm{cm}^{2}$ (heavy ions not MIP!!))

What is the right material??

- Radiation hard
- Heavy ions
- Working in gas environment
- Large area
- High energy resolution (1\%)
- Timing resolution (few ns)

A big challenge!

Silicon Carbide (SiC)

Tetrahedron of Carbon and Silicon atoms with strong bonds in the crystal lattice. Very hard and strong material!

General Properties of SiC

strong bonds !

- high thermal conductivity
- low thermal expansion
- high strength (hardness) $] \Rightarrow$ Exceptional thermal shock resistant qualities
- chemical inertness

Applications on ELECTRONIS DEVICES

- High power
- High frequency
- High temperature
- Radiation detectors

SiC for radiation detectors

- Wide band-gap (3.3eV)

Density of States

Silicon Carbide (SiC)

Silicon Carbide technology offers then an ideal response to the challenges of NUMEN, since it gives the opportunity to couple the excellent properties of silicon detectors (resolution, efficiency, linearity, compactness) with a much bigger radiation hardness (up to five orders of magnitude for heavy ions), thermal stability and insensitivity to visible light.

However...
 Defects in SiC

Challenges in the growth of bulk SiC : to grow large single crystals in large quantities is a problem

From S. Tudisco

Silicon Carbide Detectors
for Intense Luminosity Investigations and Applications
P.I. S. Tudisco

SiC $\Delta E-E$ telescopes

\checkmark Active area $1 \mathrm{~cm}^{2}$
$\checkmark \Delta E$ stage thickness ≥ 100 um
\checkmark E stage thickness $500 \div 1000 \mu \mathrm{~m}$

SiCILIA Strategy

Epitaxial growth SIC: beyond the state of the art (small number of defects) L PE:

External institutions

CNR-IMM - Catania
CNR-INO - Pisa

Companies

Fondazione Bruno Kessler (FBK) - Trento
ST Microelectronics - Catania
LPE - Catania (LPE)

Participating INFN research units

INFN Laboratori Nazionali del Sud di Catania (LNS) INFN Sezione di Catania and "Gruppo collegato di Messina" (CT-ME) INFN Sezione di Milano Bicocca (MI-B) INFN Sezione di Milano (MI)

INFN Sezione di Firenze (FI)
INFN Sezione TIFPA (TN)
INFN Sezione Pisa (PI)

Global Deliverables

- Tens of detectors: epitaxial grow $\operatorname{SiC}(50-150 \mu \mathrm{~m}$ thick) semi-insulating SiC (500-1000 $\mu \mathrm{m}$ thick)
- Study of the performance in the electrons and ions detection (radiation hardness, energetic resolution, timing, etc.)
- Study of the performance in the neutrons and X-ray detection
- Study of the ions identification through the pules shape analysis
- A wall of tens of SiC telescopes equipped with a VMM ASIC front-end as demonstrator
- Performance of demonstrator in operative conditions

Reaction targets

Target technology for intense heavy-ion beam (10p $\mu \mathrm{A}$)

Isotopes candidate for $0 v \beta \beta$:
${ }^{116} \mathrm{Sn},{ }^{116} \mathrm{Cd},{ }^{76} \mathrm{Ge},{ }^{76} \mathrm{Se},{ }^{130} \mathrm{Te},{ }^{48} \mathrm{Ca}, \ldots$
Most of them have low melting temperature and low thermal conductivity

Idea:
Evaporation on a backing material with good properties (Graphen, Diamond, Graphite) and cooling

The NUMEN challenges

and calculation of reaction
Formal ory. cross sections as a function of the NME

Accelerator
 Upgrade of the superconducting lines: for high power

Detectors:

- Gas tracker for high rate heavy ions at low pressure (MPGD)
- PID wall covering a large area made of radiation hard and high resolution detectors (SiC)

Targets:
For intense heavy-ion beams

Mechanics:
 Beam dump for zero-degree beam downstream of the spectrometer

Conclusions and Outlooks

> Many experimental facilities for $0 v \beta \beta$ half-life, but not for the NME
> Pioneering experiments shown that DCE cross sections can be suitably measured
$>$ First results for the $\left({ }^{18} \mathrm{O},{ }^{18} \mathrm{Ne}\right)$ and $\left({ }^{20} \mathrm{Ne},{ }^{20} \mathrm{O}\right)$ are encouraging, showing that quantitative information on $0 v \beta \beta$ NME are not precluded

- Experimental campaign on nuclei candidates for $0 v \beta \beta$ and work on the theory in the next 5 years
> The upgrade foreseen for the INFN-LNS cyclotron and the MAGNEX spectrometer will allow to build a unique facility for a systematic exploration of all the nuclei candidate for $0 \vee \beta \beta$

