Searching from Dark Matter in space: from PAMELA to GAPS

Mirko Boezio INFN Trieste, Italy

XXVI Giornate sui rivelatori, Cogne
16 February 2017

Cosmic Rays

A mysterious radiation

1903: Rutherford and others found that that the ionization was reduced when electroscopes were shielded of radioactivity.

- The belief spread that the penetrating radiation came from radioactive material in Earth's crust...!
- How should such radiation decrease with increasing height ...?

1909: Theodor Wulf could measure ion-production rates as low as one ion-pairls. Took his electroscope to top of Eiffel Tower and found the rate much larger than expected.

1909-11: Swiss physicist Albert Gockel carried a Wulf-type electroscope on three balloon flights (4500 m). He ascribed a considerable part of the ionization to gamma rays from 'radioactive substances in the atmosphere'.

Mysterious radiation from above

1910-14: Italian physicist Domenico Pacini made important but little noticed ionization measurements with an electroscope on land, at sea, and underwater He concluded that there was penetrating radiation in the atmosphere, independent of radioactive material in the crust...!

1911-13: Hess designed Wulf-type electroscopes with 3 mm thick brass walls. He then made 10 balloon flights. On 7 August 1912 the hydrogen filled balloon would carry him to an altitude of about 5000 m .

This flight revealed a very significant increase of the ionization at high altitude A month after the decisive flight he reported his results which became known as the discovery of galactic cosmic rays at a meeting in Munster.
V. F. Hess (1912). "Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten".

Physikalische Zeitschrift 13: 1084-1091

Mysterious space radiation

1914: Werner Kolhörster improved the Wulf electroscope, made five balloon flights in 1914. He reached 9300 m , measuring an ionization six times larger than at ground level, confirming Hess' result.

An unknown radiation from space with extreme penetrating power was causing the ionization.

No mentioning of cosmic rays or particles.

Some scientists were sceptical, especially Millikan in the USA. He could NOT confirm results with an unmanned balloon flight to 15 km over Texas.

Victor Hess

1883: Born in Austria...
1910: Earned his PhD at the University of Graz.

1912: August 7, conclusive 6 hour balloon flight to 4500 m drifted 200 km north.

1925: Professor of Experimental Physics, University of Graz.
1931: Professor, and Director Institute of Radiology, University of Innsbruck. 1936: He was awarded Nobel Prize in Physics in 1936.

1938: Relocated to the USA. Fordham University appointed Professor of Physics. 1944: Became an American citizen. 1964: Died on December 17 ${ }^{\text {th }}$.

Cosmic rays as charged particles

1927: Dmitri Skobeltsyn in the Soviet Union had obtained a cloud-chamber photo that showed a cosmic-ray track...!

1932: Bruno Rossi found that the cosmic-ray flux contained a soft component and a hard component of charged particles with energies above 1 GeV...!

Then Carl Anderson (Caltech) discovered the positron. For this he shared the Nobel Price with Hess...!

1932-1953: Many new particles were discovered by studying cosmic ray showers... After two decades of such fundamental discoveries, 1953 marked the transition to accelerator-based particle physics.

A modern picture of the cosmic radiation

Galactic Cosmic Ray Abundance and Composition

- SuperNova Explosion

Cosmic Rays in the Milky Way

$1 \mathrm{kpc} \sim 3 \times 1 \mathrm{O}^{18} \mathrm{~cm}$

Galactic cosmic rays - energetics

Ginzburg, 1958, ...

- Cosmic ray power in our Galaxy: ~ $5 \times 10^{40} \mathrm{ergs} / \mathrm{s}$
- Supernovae and their remnants:

Release 10^{51} ergs, happen $1 / 30$ years. $Q \sim 10^{42} \mathrm{ergs} / \mathrm{s}$

- Novae (accretion of matter onto white dwarf):
$100 / \mathrm{year}$, release $10^{47} \mathrm{ergs}, \mathbf{Q} \sim 10^{42} \mathrm{ergs} / \mathrm{s}$
- Rotating neutron stars:

Majority of Galactic Fermi-LAT sources, Q ~ $10^{41} \mathrm{ergs} / \mathrm{s}$

- Stellar winds from hot $0 / B$ stars:

Strong winds from rad. pressure ($10^{9} \dot{M}_{\text {sun }}$), Q~10 ${ }^{41} \mathrm{ergs} / \mathrm{s}$

Cosmic Rays

Solar System: Lodders, ApJ 591 (2003) 1220 GCR: Israel, ECRS 2004

Cosmic-Rays' "Life"

DM annihilations

DM particles are stable. They can annihilate in pairs.

flux $\propto n^{2} \sigma_{\text {annihilation }}$ astro\& particle reference cross section: cosmo $\sigma=3 \cdot 10^{-26} \mathrm{~cm}^{3} / \mathrm{sec}$

DM annihilations

Resulting spectrum for positrons and antiprotons $\mathrm{M}_{\text {WIMP }}=1 \mathrm{TeV}$

The flux shape is completely determined by:

1) WIMP mass
2) Annihilations channels

Galactic DM signals

First Detection in the Cosmic Rays

First detection of positrons in the cosmic radiation in 1964 by J.A. De shong, R.H. Hildebrand \& P. Meyer (Phys. Rev. Let. 12, 3, 1964)

First detection of antiprotons in the cosmic radiations in 1979 by R.L. Golden et al. Phys. Rev. Let. 43, 1264, 1964) and by E. Bogomolov et al.

The first historical measurements on galactic antiprotons

The first historical measurements of the \bar{p} / p - ratio and various Ideas of theoretical Interpretations

Balloon data : Positron fraction before 1990

First detection in 1964 by J.A. De shong, R.H. Hildebrand \& P. Meyer (Phys. Rev. Let. 12, 3, 1964)

Antiparticle Experiments (old and new)

Antimatter and Dark IVIatter Research

izar	\checkmark BESS $(93,95,97,98,2000$
MASS - 1,2 (89,91)	2004,2007)
\checkmark TrampSI (93)	\checkmark Heat $(94,95,2000)$
CAPRICE $(94,97,98)$	\checkmark IMAX (96)
\checkmark PAMELA (2006-2016)	\checkmark BESS LDF (2004
	\checkmark AMS-01 (1998)

HEAT 94-95

Subnuclear Physics Techniques in Space Experiments

$>$ Charge sign and momentum
> Beta selection
$>$ Z selection
> hadron - electron discrimination

Caprice
 Subnuclear physics techniques in space experiments

> Charge sign and momentum
> Beta selection
> Z selection
> hadron - electron discrimination

Antiproton

Positron

Def-0.16 Sigdef 0.004 Rig -6.43
Nx 17 Ny 8 Chix 0.7 Chiy 0.5

Def 0.14 Sigdef 0.002 Rig 6.90 Nx 18 Ny 11 Chix 0.7 Chiy 2.4

BESS Detector

Rigidity measurement SC Solenoid (L=1m, B=1T)

- Min. material ($4.7 \mathrm{~g} / \mathrm{cm}^{2}$)
- Uniform field
- Large acceptance

Central tracker
\checkmark Drift chambers (Jet/IDC)
$\checkmark \mathrm{d} \sim 200 \mathrm{~mm}$
Z, m measurement

$$
\begin{array}{ll}
R, \beta & -->m=Z e R \quad 1 / \sqrt{\beta^{2}-1} \\
& d E / d x-->Z
\end{array}
$$

BESS97/98 Apparatus

T. Maeno et al., Astropart. Phys. 16 (2011) 121

AMS-01 : the detector

- Acceptance: Ω » $0.15 \mathrm{~m}^{2}$ sr
- Bending power » $0.14 \mathrm{Tm}^{2}$

- TOF : trigger $+\beta$ e dE/dx meas.
- Tracker: sign Z + Rigidity + dE/dx meas.
- Cherenkov: separation e/p up to $\sim 3 \mathrm{GeV}$.

What do we need?

Measurements at higher energies
Better knowledge of background
High statistic
Continuous monitoring of solar modulation

Long Duration Flights

BESS-Polar Program

Status of the BESS-Polar I Flight
Observation Time: 8.5 days
Float Time: 8.5 days (12/13/2004-12/21/2004)
Events recorded: > 0.9×10^{9}
Data volume: ~ 2.1 terabytes
Data recovery: completed 2004
Payload recovery: completed 2004

Status of the BESS-Polar II Flight

Observation Time: 24.5 days
Float Time: 29.5 days (12/23/2007-01/21/2008)
Events recorded: > 4.7×10^{9}
Data volume: ~ 13.5 terabytes
Data recovery: completed Feb 3, 2008
Payload recovery: completed Jan 16, 2010
Makoto Sasaki, Antideuteron 2014, UCLA

BESS Flight History

- Nine northern latitude BESS flights (1+ days) 1993-2002
- Two Antarctic BESS-Polar flights (8.5 \& 24.5 days) 2004, 2007

2001-2002
2004, 2007

		BESS-99,00		BESS-Polar No Vessel
	$\begin{gathered} 6=70 \\ \begin{array}{c} 6=1.03 \\ 97 \\ 0.2-3.5 \mathrm{GeV} \\ 98 \mathrm{n}=1.02 \end{array} \end{gathered}$	Shower Counter辰酸 (1) Bep.	T(an Mos MeN HTATEG p He up to 1 TeV	New Mag (ultra thin)
-0.2-0.6 GeV \quad p0.2-1.4 GeV	¢0.2-4.2 G6V	-0.2-4.2 GeV	$\overline{\mathrm{p}} 0.2-4.2 \mathrm{GeV}$	- $0.1-4.2 \mathrm{GeV}$
6,243	415, 398	668, 558	147	1512, 7886

Evolution of the BESS Instrument

Makoto Sasaki, Antideuteron 2014, UCLA

	$1993+1994$	1995	1997~
σ	300 psec	110 psec	70 psec
N	8	43	~500/year
E	$0.2 \sim 0.6 \mathrm{GeV}$	$0.2 \sim 1.4 \mathrm{GeV}$	$0.2 \sim 4.2 \mathrm{GeV}$
	First mass-ID	New TOF	Cherenkov

BESS-Polar Program

Minimize material in spectrometer New detector (Middle TOF), No pressure vessel

Energy range extended down to 0.1 GeV

Low Energy Antiproton Observed in BESS 98 and in BESS Polar II

BESS 1998

BESS Polar II (2007)

pamêta

PAMELA
Payload for Antimatter / Matter Exploration and Light-nuclei Astrophysics

Design performance

	Energy range	Particles/3 years
Antiproton flux	$80 \mathrm{MeV}-190 \mathrm{GeV}$	$O\left(10^{4}\right)$
Positron flux	$50 \mathrm{MeV}-270 \mathrm{GeV}$	$O\left(10^{5}\right)$
Electron/positron flux	up to 2 TeV (from calorimeter)	
Electron flux	up to 400 GeV	$O\left(10^{6}\right)$
Proton flux	up to 700 GeV	$O\left(10^{8}\right)$
Light nuclei (up to Z=6)	up to $200 \mathrm{GeV} / \mathrm{n} \quad \mathrm{He} / \mathrm{Be} / \mathrm{C}: O\left(10^{7 / 4 / 5}\right)$	
Antinuclei search	Sensitivity of $O\left(10^{-8}\right)$ in $\mathrm{He-bar} / \mathrm{He}$	

- Unprecedented statistics and new energy range for cosmic ray physics
- e.g. contemporary antiproton \& positron energy, Emax $\approx 50 \mathrm{GeV}$
- Simultaneous measurements of many species
- constrain secondary production models

Scientific goals

- Search for dark matter signals
- Search for antihelium (primordial antimatter)
- Study of cosmic-ray propagation (light nuclei and isotopes)

- Study of electron spectrum (local sources?)
- Study solar physics and solar modulation
- Study terrestrial magnetosphere

Scientific goals

- Search for dark matter signals
- Search for antihelium (primordial antimatter)
- Study of cosmic-ray propagation (light nuclei and isotopes)

- Study of electron spectrum (local sources?)
- Study solar physics and solar modulation
- Study terrestrial magnetosphere

The magnet

Characteristics:

- 5 modules of permanent magnet (Nd-B-Fe alloy) in aluminum mechanics
- Cavity dimensions ($162 \times 132 \times 445$) cm^{3}

$$
\rightarrow \mathrm{GF} \sim 21.5 \mathrm{~cm}^{2} \mathrm{sr}
$$

- Magnetic shields
- 5mm-step field-map on ground:
- $B=0.43 \mathrm{~T}$ (average along axis),
- B=0.48 T (@center)

The tracking system

Main tasks:

- Rigidity measurement Sign of electric charge dE/dx (ionisation loss)

Characteristics:

- 6 planes double-sided (x\&y view) microstrip Si sensors
- 36864 channels
- Dynamic range: 10 MIP

Performance:

- Spatial resolution: ~3 $\mu \mathrm{m}$ (bending view)
- MDR ~1 TV/c (from test beam data)

The electromagnetic calorimeter

Main tasks:

- lepton/hadron discrimination
- $\mathbf{e}^{+/-}$energy measurement

Characteristics:

- 44 Si layers (x / y) $+22 \mathbf{W}$ planes
- $16.3 X_{0} / 0.6 \lambda_{L}$
- 4224 channels
- Dynamic range: 1400 mip
- Self-trigger mode (> 300 GeV ; GF~600 cm^{2} sr)

Performance:

- $\mathrm{p} / \mathrm{e}^{+}$selection efficiency $\sim 90 \%$

- p rejection factor $\sim 10^{5}$
- e rejection factor $>10^{4}$
- Energy resolution ~5\% @ 200 GeV

The anticounter shields

Main tasks:

- Rejection of events with particles interacting with the apparatus (off-line and second-level trigger)

Characteristics:

- Plastic scintillator paddles, 8mm thick
- 4 upper (CARD), 1 top (CAT), 4 side (CAS)

Performance:

- MIP efficiency > 99.9\%

Satellite and space environment

- Large mechanical loads during launch phase \Rightarrow random vibrations (all axis) 7.4 g rms , SRS (Shock Response Spectrum) -all axis- up to 400 g
- Low mass budget
- Thermal variations (5-40 ${ }^{\circ} \mathrm{C}$ in normal operations)
- Low power budget (\Rightarrow small power consumption)
- Redundancy and safety (accurate design, no SPF)
- Protection against highly ionizing events (SEU and SEL)
- EMI/EMC issues
- Limited telemetry

PAMELA models

Mass/Thermal Model (MDTM):
\Rightarrow Full cycle of vibration/shock
\Rightarrow Thermal tests
\Rightarrow Dimensional/transp. tests

Technological Model (TM):
\Rightarrow Preliminary acceptance tests
\Rightarrow Power on/off,telecommands
\Rightarrow Data transmission to VRL
\Rightarrow EMI/EMC tests

Flight Model (FM):
\Rightarrow Beam tests;
\Rightarrow Integration in the satellite
\Rightarrow Pre-flight tests
\Rightarrow Launch

Mechanical tests

The PAMELA MDTM during the vibration and shock tests at IABG mbH (Munich), August 2002

Thermal tests

Results of the PAMELA thermal qualification tests, April 2003. Temperatures in different subsystems are shown during the execution of 6 different thermal modes.

Resurs-DK1 satellite

Orbit characteristics

- Quasi-polar (70.0º)

- Elliptical (350 km - 600 km)
- PAMELA traverses the South Atlantic Anomaly
- At the South Pole PAMELA crosses the outer (electron) Van Allen belt

Data acquisition details

- Trigger configurations (selected by S1 counting rate):
- High-radiation environment
\rightarrow (S21 AND S22) AND (S31 AND S32) + CALORIMETER
- Low-radiation environment
\rightarrow (S11 OR S12) AND (S21 OR S22) AND (S31 OR S32) + CALORIMETER
- NB:
- High voltage to PMTs, etc. is not changed during passage through SAA and radiation belts, or solar particle events.
- Average trigger rate $\sim 25 \mathrm{~Hz}$
- Fraction of live time ~ 73\%

- Event size (compressed mode) ~ 5kB
$\rightarrow 25 \mathrm{~Hz} \times 5 \mathrm{kB} / \mathrm{ev} \sim 10 \mathrm{~GB} /$ day

Pallette TOF TRK, CALO, 54 [MIP]:					
-	0.2	2-10	$10 \cdot 100$	100-500	> 500
ND [neutrons]:					
-	1	2	3.6	7-14	> 14
AC:					
not hit		HIT trigger	HIT back	round	

vifu

$S 1$

92 GV positron candidate

Antiprotons

Antiproton / positron identification

Antiproton

(NB: e-/p ~ 10²)

Time-of-flight: trigger, albedo rejection, mass determination (up to 1 GeV)

Bending in spectrometer:
sign of charge
Ionisation energy loss (dE/dx):
magnitude of charge

Interaction pattern in calorimeter: electron-like or proton-like, electron energy

Positron

(NB: $\mathrm{p} / \mathrm{e}^{+} \sim 10^{3-4}$)

Calorimeter Selection

Proton Background

- Spectrometer tracking information is crucial for high-energy antiproton selection
- Finite spectrometer resolution - high rigidity protons may be assigned wrong sign-of-charge
- Also background from scattered protons
- Eliminate 'spillover' using strict track cuts (x^{2}, lever arm, no δ-rays, etc)
- MDR > $10 \times$ reconstructed rigidity
- Spillover limit for antiprotons expected to be $\sim 200 \mathrm{GeV}$.

MDR > 850 GV, no EM shower

PAMELA Antiparticle Results: Antiprotons

The Alpha Magnetic Spectrometer (AMS) on the International Space Station

AMS: A worldwide Collaboration

AMS : A TeV precision, multipurpose spectrometer

Transition Radiation Detector

Identify electrons
Particles are defined by their
 charge (Z) and energy (E) or momentum (P)

Silicon Tracker Z, P

Electromagnetic Calorimeter

The Charge and Energy (momentum) are measured independently by many
are measured independ

Time of Flight Z, E
 \pm Z

Ring Imaging Cherenkov

Transition Radiation Detector (TRD)

Signals from 20 layers are combined in a likelihood estimator which allows an efficient discrimination of proton background

TRD LikelihoodRatio electron/proton

TOF acceptance $0.4 \mathrm{~m}^{2} \mathrm{sr}$

Time of Flight and particle velocity (β)

Fast trigger generation
Distinction upward/downward going particles

Silicon Tracker

With an effective sensitive area of $6.2 \mathrm{~m}^{2}$ the AMS Silicon Tracker is the largest precision tracker ever built for space application.

MDR is about a few TV
Alignment $3 \mu \mathrm{~m}$, resolution $10 \mu \mathrm{~m}$ 192 read-out units; 200,000 channels;

Ring Imaging CHerenkov (RICH)

$$
\Theta \propto V \quad \text { Intensity } \propto Z^{2}
$$

10,880 photosensors

Electromagnetic Calorimeter (ECAL)

50,000 fibers, $\phi=1 \mathrm{~mm}$, distributed uniformly inside $1,200 \mathrm{lb}$ of lead. Provide a precision, 3-dimensional, $\mathbf{1 7 X}_{0}$ measurement of the directions and energies of photons and electrons up to 1 TeV .

Antiproton Identification

(a) Negative rigidity and positive rigidity data samples in the $(\mathrm{RICH}-\operatorname{sign}(\mathrm{R}) \times$ estimator $\Lambda_{\text {TRD }}$) plane for the absolute rigidity range $5.4-6.5 \mathrm{GV}$. The contributions of ${ }^{-} p, p, e^{+}, e^{-}, \pi^{+}$, and π^{-} are clearly seen. The antiproton signal is well separated from the backgrounds.
(b) For negative rigidity events, the distribution of data events in the ($\Lambda_{\text {TRD }}-$ charge confusion estimator $\Lambda_{c c}$) plane for the absolute rigidity bin 175-211 GV. (c) Fit with $\chi^{2} /$ d.f. $=138 / 154$ of the antiproton signal template (magenta), the electron background template (blue), and the charge confusion proton background template
(green) to the data in (b).
M. Aguilar, Phys.Rev.Lett. 117 (2016) 091103

AMS-02 vs PAMELA \& BESS

B. Bertucci, CRIS 2015, Gallipoli, Italy

AMS-02 vs PAMELA \& BESS

M.Aguilar, PRL 117 (2016) 091103

Cosmic-Ray Antiprotons and DM limits

PAMELA and preliminary AMS-02 antiproton data constrains on various dark matter models and astrophysical uncertainties.

G. Giesen et al., JCAP 1509 (2015) 023, arXiv: 1504:04276

$\mathrm{m}_{\mathrm{DM}}[\mathrm{GeV}]$
Fornengo, Maccione, Vittino, JCAP 1404 (2014) 04, 003

Positrons

Proton / positron discrimination

Time-of-flight:
trigger, albedo
rejection, mass
determination (up to
1 GeV)

Bending in spectrometer: sign of charge

Ionisation energy loss (dE/dx):
magnitude of charge

Interaction pattern in calorimeter: electronlike or proton-like, electron energy

Proton

Positron selection with calorimeter

Fraction of energy released along the calorimeter track (left, hit, right)

Antiparticle selection

Positron selection with calorimeter

Rigidity: 20-30 GV

-Starting point of shower

Positron selection with calorimeter

Rigidity: 20-30 GV

Fraction of charge released along the calorimeter track (left, hit, right)

PAMELA Results: Positrons

AMS: A TeV precision, multipurpose spectrometer
TRD
Identify ${ }^{+}$, e
Particles and nuclei are defined by their
TOF

AMS Positron Selection

Select protons Select electrons

e/p separation with calorimeter+tracker

Example of Positron Selection:
The TRD Estimator shows clear separation between protons and positrons with a small charge confusion background

AMS Positron Fraction

M. Aguilar, Phys.Rev.Lett. 110 (2013) 141102

2014: New Results on Positron Fraction

Observed flattening above $\approx 200 \mathrm{GeV}$

Positron Flux Data with AMS

A Challenging Puzzle for CR Physics

CR Positron spectrum significantly harder than expectations from secondary production

Implications

A rising positron fraction requires:

1. An additional component of positrons with spectrum flatter than $C R$ primary electrons
2. A diffusion coefficient with a weird energy dependence (BUT this should reflect in the CR spectrum as well)
3. Subtleties of Propagation

A Challenging Puzzle for CR Physics

P.Blasi, PRL 103 (2009) 051104 (see also Y. Fujita et al., PRD 80 (2009) 063003, M. Ahlers et al. PRD 80 (2009) 123017) Positrons (and electrons) produced as secondaries in the sources (e.g. SNR) where CRs are accelerated.

A Challenging Puzzle for CR Physics

P.Blasi, PRL 103 (2009) 051104 (see also Y. Fujita et al., PRD 80 (2009) 063003, M. Ahlers et al. PRD 80 (2009) 123017) Positrons (and electrons) produced as secondaries in the sources (e.g. SNR) where CRs are accelerated.

But also other secondaries are produced: significant increase expected in the \mathbf{p} / \mathbf{p} and secondary nuclei ratios.

A Challenging Puzzle for CR Physics

P. Mertsch \& S. Sarkar, PRL 103 (2009) 081104
P.Blasi, PRL 103 (2009) 051104 (see also Y. Fujita et al., PRD 80 (2009) 063003, M. Ahlers et al. PRD 80 (2009) 123017) Positrons (and electrons) produced as secondaries in the sources (e.g. SNR) where CRs are accelerated.

But also other secondaries are produced: significant increase expected in the \mathbf{p} / \mathbf{p} and secondary nuclei ratios.

Mechanism: the spinning B of the pulsar strips e^{-} that accelerated in the outer magnetosphere emit g that produce $e^{ \pm}$. But pairs are trapped in the cloud. After $(4-5) \times 10^{4}$ years pulsars leave remanent and pairs are liberated (e.g. P. Blasi \& E. Amato, arXiv:1007.4745).

Young ($T<10^{5}$ years) and nearby ($<1 \mathrm{kpc}$)
If not: too much diffusion, low energy, too low flux.

Geminga: 157 parsecs from Earth and 370,000 years old
B0656+14: 290 parsecs from Earth and 110,000 years old.

Not a new idea, e.g.: Harding \& Ramaty, ICRC 2 (1987), Boulares, ApJ 342 (1989), Atoyan et al. PRD 52 (1995)

Pulsar Explanation

D. Hooper, P. Blasi, and P. Serpico, JCAP 0901:025,2009; arXiv:0810.1527
Contribution from diffuse mature \&nearby young pulsars.

P. Blasi \& E. Amato, arXiv:1007.4745 Contribution from pulsars varying the injection index and location of the sources.

Dark Matter Explanation

J. Kopp, Phys. Rev. D 88 (2013) 076013; arXiv:1304.1184

I. Cholis et al., Phys. Rev. D 80 (2009) 123518; arXiv:0811.3641v1

Galactic DM signals

Galactic DM signals

Detection prospects

DM configurations allowed by antiproton bounds
Relevant detection prospects for Dbar energies
below few Gev/n, where dependence on
solar modulation modeling can have an
impact on the DM signal up to a factor of 2

Experimental expected sensitivities: 3σ C.L.

$$
\begin{aligned}
& \text { GAPS LDB+ : } 1 \text { detected event } \\
& \text { AMS: } \quad 2 \text { detected events }
\end{aligned}
$$

- DM searches in the antibarion channel are crucial:
- AntíProtons
- Are currently offering significant bounds on particle DM
- Galactic transport has a large impact on the DM reconstruction capabilities
- With the expected increased AMS sensitivity, nuclear uncertainties in the background calculation become a limiting factor
- AntíDeuterons
- At low kinetic energies represent the signal with potentially the largest S / B ratio: "golden channel" for discovery
- Prospects for signal detection both for GAPS and AMS (up to about 10 events)
- Galactic transport and nuclear uncertainties are important, but antiD are a detection channel in a large fraction of the DM parameter space

GAPS science summary

- Antideuterons as DM signatures
- no astrophysical background at low energy
- complementary to direct/indirect searches and collider experiments
- search for: light DM, heavy DM, gravitino DM,

LZP in extra-dimensions theories, (evaporating PBH)

- Antiprotons as DM and PBH signatures
- precision flux measurement at ultra-low energy ($\mathrm{E}<0.25 \mathrm{GeV}$)
- complimentary to direct/indirect searches and collider experiments
- ~ 10 times more statistics @ 0.2 GeV , compared to BESS/PAMELA
- search for: light DM, gravitino DM,

LZP in extra-dimensions theories, evaporating PBH

- Mission approved by NASA: expected to launch from Antarctica in 2020/2021
>1 LDB flight (~ 35 days) -> precision antiproton flux measurement
~ 1500 antiprotons in GAPS $E<0.25 \mathrm{GeV}$, while 30 for BESS, 7 for PAMELA at $E \sim 0.25 \mathrm{GeV}$
>2 LDB flights (~ 70 days) -> improved antideuteron statistics
Antideuteron sensitivity: $\sim 3.0 \times 10^{-6}\left[\mathrm{~m}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}(\mathrm{GeV} / \mathrm{n})^{-1}\right]$ at $E<0.25 \mathrm{GeV}$
>3 LDB flights (~ 105 days) -> Antideuteron sensitivity: $\sim 2.0 \times 10^{-6}\left[\mathrm{~m}^{2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}(\mathrm{GeV} / \mathrm{n})^{-1}\right]$ at $E<0.25 \mathrm{GeV}$

Detection Prospects

Figure 1: Three 35-day GAPS flights will probe an array of representative DM models ${ }^{4-7}$, which predict antideuteron fluxes $\mathscr{O}\left(10^{2}-10^{4}\right)$ above the astrophysical background, and will be ~ 2.5 times more sensitive than predicted AMS low-energy limits (Sec. 2.3). The arrow shows the AMS geomagnetic cutoff correction size.

Unique probes for DM in extra-dimensions and evaporating PBHs

LZP

- Lightest Z_{3} charged particle
- stable under Z_{3} symmetry
- right-handed neutrino

Primordial Black Hole Evaporation

- density fluctuations, phase transitions, collapse of cosmic strings in the early universe
- $R<0.02-0.05 \mathrm{pc}^{-3} \mathrm{yr}^{-1}(\mathrm{y}$, Fermi, EGRET)
- $\mathrm{R}<0.0012 \mathrm{pc}^{-3} \mathrm{yr}^{-1}$ (p, BESS-Polar II only)

10^{-1}
1 Kinetic energy [GeV]

GAPS detects atomic X-rays and annihilation products from exotic atoms

GAPS instrument summary

TOF plastic scintillators

- outer TOF: $3.6 \mathrm{~m} \times 3.6 \mathrm{~m}, 2 \mathrm{~m}$ height
- inner TOF: $1.6 \mathrm{~m} \times 1.6 \mathrm{~m}, 2 \mathrm{~m}$ height
- 1 m b/w outer and inner TOFs
- 500 ps timing resolution
- 16.5 cm wide plastic paddles
- PMT on each end

Science weight: $\sim 1700 \mathrm{~kg}, 34 \mathrm{H}$ balloon

Si(Li) detectors

- 10 layers, $1.6 \mathrm{~m} \times 1.6 \mathrm{~m}$
- layer space: 20 cm
- $\mathrm{Si}(\mathrm{Li})$ wafer (~ 1500 wafers)
- 4 inch diameter
- 2.5 mm thick wafer
- 12×12 rectangular
- segmented into 4 strips
\rightarrow 3D particle tracking
- timing resolution: ~ 100 ns
- energy resolution: 3 keV
- operation temperature: -35 C
- dual channel electronics

X-ray: 20-80 keV
charged particles: 0.1-100 MeV
Cooling system

- oscillating heat pipe (OHP)
- demonstrated in pGAPS
M. Hailey, Dark Matter 2014, UCLA

Astropart. Phys. 74, 6 (2016)

Background rejection:

- stopping protons do not have enough energy to produce pions and cannot form exotic atoms (positive charge)
- deexcitation X-rays have characteristic energies
- number of annihilation pions and protons depends on mass of antiparticle
- stopping depth in detector

- GAPS will use 13504 " $\mathrm{Si}(\mathrm{Li})$ detectors, 2.5 mm thick
- fabrication scheme developed at Columbia U.
- plan is to have detectors produced by private company Shimadzu, Japan
- leakage current $\sim 15 n A$ at -30 C
- confirmed performance with cosmic rays (MIPs) and Am-241 source (X-rays)
- already achieved 4.4 keV FWHM at 59 keV
- $\mathrm{Si}(\mathrm{Li})$ detector fabrication: NSS/MIC 2013 IEEE 1-3, (2013)

[^0]
INFN Contribution

- Design, development and production of the ASIC for the read-out of the $\mathrm{Si}(\mathrm{Li})$ detectors

INFN Contribution

Objective: read out 2.5 mm thick, 1" diameter $\mathrm{Si}(\mathrm{Li})$ detectors $\left[\mathrm{C}_{\mathrm{D}} \approx 75 \mathrm{pF}, \mathrm{I}_{\text {LEAK }}=\mathrm{O}(1 \mathrm{nA})\right.$]
Requirements:

- dynamic range of 50 MeV , minimum signal ≈ 20 keV
- energy resolution of 4 keV FWHM at the lower end (goal of 3 keV FWHM)
- interface to already available discrete preamplifier

Available design choices and optimization opportunities:

- Selection of the CMOS technology (at present all electronics is discrete)
- Investigate the possibility to integrate the preamplifier
- ASIC architecture (shaper, peak detector vs S / H, multiplexing, internal digitization?)

INFN Contribution

- Design, development and production of the ASIC for the read-out of the $\mathrm{Si}(\mathrm{Li})$ detectors
- Design and development of the HV Power Supply System for the $\mathrm{Si}(\mathrm{Li})$ detectors.

Successful prototype (pGAPS) flight in 2012 @ Taiki, JAXA balloon facility in Japan

Conclusions

The first historical measurements on galactic antiprotons

Conclusions

[^0]: P. von Doetinchem

 GAPS
 Sep 16-p. 11

