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Outlook
• Micro-electronics technology

• Single-photon detection why and where

• Approaches at single photon detection

• Single photon detection using impact ionization

in semiconductors

• Overview of SiPM parameters

• New trends in SPAD/SiPM
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Micro-electronics



Claudio Piemonte, FBK 4

valves and

discrete components

transistors

and discrete 

components

integrated

circuits

Electronics evolution
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Nel 1961, Fairchild 

commercializes first 

integrated circuit

1958, Jack Kilby, 

Texas Instruments.

First integrated circuit.

Nobel prize 2000 SSI 10 components

(small scale integration)

Micro-electronics
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1970 VLSI

very large scale integration

thousands of components

(first microprocessors)

1980 ULSI

ultra large scale integration

millions of components

(advanced microprocessors)

Micro-electronics
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10 micron

digital electronics

analog electronics

Micro-electronics
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Micro-electronics

Present: going vertical!

Picture from: https://www.semiwiki.com/forum/content/860-physical-verification-3d-ic-designs-using-tsvs.html
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Micro-electronics

technology
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Starting material: silicon.

Sand: silicon oxide

Growth of silicon ingot

Silicon wafer

Pictures from: http://apcmag.com/picture-gallery-

how-a-chip-is-made.htm/
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Circuit design

Simulation

CAD design
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IC production

Silicon Foundry

Silicon wafer lot
Silicon wafer

with thousands

of ICs
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IC production

Lithography: core of a foundry

Present CMOS technologies have 30-50 lithos
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Wafer testing and dicing

Automatic probers for

wafer level testing

Dicing in single ICs
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Packaging

“Pick and place”

IC in package

Pictures from: http://apcmag.com/picture-gallery-

how-a-chip-is-made.htm/
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Larger IC producers

http://anysilicon.com/top-semiconductor-foundries-capacity-2015-2016-infographic/
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CMOS technology

Complementary metal–oxide–semiconductor is a 

technology for constructing integrated circuits. 

Typically CMOS designs use complementary and 

symmetrical pairs of p-type and n-type MOSFETs for logic 

functions.
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CMOS image sensors

1um
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CMOS image sensors: evolution

Backside illumination
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CMOS image sensors
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Main features of the 

micro-electronics technology

 compact

 rugged

 low power consumption

 Reliable, reproducible, mass-production

 COST
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Micro-electronics 

technology is the

ideal platform for the 

development/production of 

any sensor
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Low-level light detection
applications



Claudio Piemonte, FBK 24

Low-level light detection

we refer to this part 

of the spectrum

~100 nm~2um
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Christopher Chunnilal, et al. Opt. Eng. 53(8), 081910 (July 10, 2014). 

Single-photon applications
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Nuclear Physics
Cherenkov light detection Noble liquids TPCs

Spectroscopy
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Bio-medical applications
Positron Emission Tomography Flow cytometry

TCSPC
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Lidar

Applications:
Autonomus cruise control
Speed gun
Landing Aid
Rendezvous and docking
Earth science
….
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Quantum Random Number Gen.

The problem 

of secure

communication
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Low-level light detection
technologies
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The problem: processing of extremely weak signals

Current signal:

1 pair/photon

Detector noise:

fluctuation of leakage

current

Electronics noise:

shot + thermal noise

Need of a detector with internal amplification to reduce 

the impact of electronic noise!

Dominating

noise
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Vacuum-based photodetectors
with internal gain.
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PMT   (photomultiplier tube)

MOST USED for low level light detection! 

Pros:

• very mature technology

• low dark noise

• good QE in the whole light spectrum

Cons:

• sensible and bulky (vacuum-based)

• requires high voltage

• sensitivity to magnetic fields

• damaged with high light levels

Vacuum technologies
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MCP  (micro-channel plate)

Vacuum technologies

Pros:

• low dark noise

• very fast

• large size possible

Cons:

• sensible and bulky (vacuum-based)

• requires high voltage

• damaged with high light levels
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HPD (hybrid photodetector)

Vacuum technologies

Pros:

• good photon resolution

• fast

• can be operated in magnetic field

Cons:

• sensible and bulky (vacuum-based)

• requires high voltage

• damaged with high light levels
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Transmission dynode 

(Tynode/Trynode)

Vacuum technologies

TiN + Al2O3

ERC Membrane project

(H. Van Der Graaf)
Patent US6657385
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Solid-state photodetectors
with internal gain.

(produced with micro-electronic technologies)
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The photodiode

Movement of carriers

induces a current at the 

electrodes according to 

the Ramo theorem.
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Impact ionization:

carrier has enough kinetic

energy to break a bond, i.e.

to move an electron from

valence to conduction band 

Ionization rates:

number of pairs created by

a carrier per unit distance

travelled

 a field of ~3x105V/cm is 

needed to create on average

a pair in 1mm travelled.

Impact ionization 

an

ap

Silicon
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Simulated diode reverse current
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VBD VAPD

Reverse current in a diode

Low field region (V<VAPD)

Leakage current is given by 

thermal generation

in the depletion region:

I = q * G * Wdep = q * ni * 1/Tg *Wdep

High field region (V>VAPD)

Leakage current deviates from the 

expected constant value because

some carriers “impact ionize”

A sort of “GAIN” could be defined

Very high field region (V>VBD)

the current rises indefinetly

“avalanche”
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Impact ionization

Avalanche Photo-Diode

Geiger-Mode Avalanche Photo-Diode/
Single-Photon Avalanche Diode
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Avalanche photodiode (APD)

Electrons photo-generated in the drift region are 

multiplied (on average) by the same factor!
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region
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p
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Noise in an APD

Fluctuation of leakage current

 SHOT NOISE
Statistical fluctuation of gain

(additional noise vs PD)

 EXCESS NOISE
It deterioratess with gain
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Excess Noise Factor (F) in an APD

F  =  M*k  +  (2-1/M)(1-k) k = ah/ae for electron

injection

1

10
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1000

0 1 2 3 4

F

k

G=100

G=20

K must be as small as

possible to minimize F.

Ideally = 0   =>

holes do not ionize

In silicon, k depends strongly on the field,

at low fields (~2x105V/cm) k<<1

Silicon
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Reach-through APD

The structure can be designed

for backside illumination to 

allow usage also at short

wavelengths.

photon

front-side illumination

suitable for red/IR light
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Features of an APD

1. Spatially uniform avalanche multiplication 

No micro-plasmas  dislocation-free process

2. Reduction of the field along the edges

 guard-ring

 beveled structure

n+

p+

p

p

n+

p+

p
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Features of an APD

3. Choice of semiconductor material based on: 

- quantum efficiency at particular wavelength

- response speed

- noise

Germanium: Sensitivity from 1 to 1.6um

k~1  high F

High speed

Silicon: Sensitivity from 0.1 to 1um 

k~0.1  low F

Hetero-junct.:    sensitivity from 1 to 1.7um 

k depends on materials

high speed
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t = 0  ……..let’s bias the diode at V>VBD

t < t0 ……..i=0 (if no free carriers in the high field region)

t = t0 ..........photocarrier initiates the avalanche

t0 < t < t1….avalanche spreading

t > t1 ……..self-sustaining current 
(limited by series resistances)

t

i

t0

i=iMAX

t1

GM-APD/SPAD: principle (i)

n+

p+

p

-

+ Efield

p
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We need to quench the avalanche to detect another photon

VBIAS

VD

• large resistance: passive quenching

• analog circuit: active quenching

t

i

t0 t1 t2

t

vD

vBD

GM-APD/SPAD: principle (ii)
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GM-APD/SPAD: model 
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The GM-APD can be modeled with an electrical circuit and

two probabilities:

CD

RS

VBD

RQ
VBIASVD

SPAD

- CD = diode capacitance 

- Rs = series resistance (~1kW)

- VBD = breakdown voltage

- RQ = quenching resistance (>300kW)

- VBIAS > VBD

- P01 = Triggering probability

- P10 = turn-off probability

which govern the switch transition

GM-APD/SPAD: model 
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OFF condition: switch open,  

(capacitance charged to VBIAS, no current 

flowing)

Avalanche triggering (P01 )      [t0]

ON condition: switch closed

 CD discharges to VBD with 

a time constant RSxCD, at the same time 

the external current grows to (VBIAS-VBD)/RQ

Avalanche quenching (P10)     [t1]

OFF condition:  switch open

 diode capacitance recharghes from VBD 

to VBIAS with a time constant RQxCD

Ready for new detection       [t2]

CD

RS

VBD

RQ
VBIAS

IINT
ID

VD

DIODE

t

ID

t0

t2

t

IINT

~(VBIAS-VBD)/RQ

t1

~(VBIAS-VBD)/RQ

t0
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P01 – Triggering probability

MC simulations of the 

current growth during an 

avalanche build-up process
[Spinelli, IEEE TED, vol. 44, n. 11, 1997]

avalanche failed

=> no photon detection

 Triggering probability depends on the ionization rates.

 Important factor in the photo-detection efficiency.
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Quenching resistance must be high enough!! 

R. Haitz, JAP vol.35, n.5 1964

P10 – Turn-off probability

probability to quench the avalanche by a fluctuation 

to zero of the number of carriers crossing the HF

Steady current through junction (A)
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