

Single-photon detectors in micro-electronics technology – part 2

Claudio Piemonte Chief Scientist, Fondazione Bruno Kessler *piemonte@fbk.eu*

Low-level light detection technologies

2

The problem: processing of extremely weak signals

Need of a detector with internal amplification to reduce the impact of electronic noise!

Solid-state photodetectors with internal gain.

4

Detectors with gain

Photodiode

1 photo-carrier

Impact ionization:

- linear mode: gain M
- Geiger mode: avalanche

P₁₀ – Turn-off probability

The SPAD response is not proportional to light intensity (in flashes).

SiPM concept

Array of tiny independent SPADs can provide a proportional information.

Digital SiPM

SPADs are connected in parallel.

Output analog signal is proportional to # of photons.

Very simple technology, fully custom, optimized.

Signal digitized at SPAD level.

Integrated Digital architecture produces information on # of photons and time stamp.

Deep sub-mm CMOS technology required.

SPADs/SiPMs: when, where?

1960	1970	1980			
Theory of Geiger-mode discharge in pn junctions Haitz, McIntyre	Idea of SPAD expl G-M theory Various sources	First SPADs PoliMI EG&G, Canada			
Some papers avala from 80-90s:	ards picosecond resolut anche diodes S. Cova, A. Longoni, and A. Andreoni Centro Elettronica Quantistica e Strumentazione Elett Milano, Italy (Received 5 August 1980; accepted for publication 17 O	ttronica del C.N.R., Politecnico di Milano, Istituto di Fisica.			
Avalanche photodiodes and quenching circuits for single-ph S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa 1956 APPLIED OPTICS / Vol. 35, No. 12 / 21 April 1996	noton detection Photon with sil	n counting techniques licon avalanche photodiodes			
	3894 APPLIE	Darleene MacSween, Robert J. McIntyre, Claude Trottier, and Paul P. Webb 3894 APPLIED OPTICS / Vol. 32, No. 21 / 20 July 1993			

SPAD/SiPMs: when, where?

...from SPAD to SiPM

New issues:

- SPAD fill factor limits the efficiency
- Interactions between SPADs

- Large area

Analog SiPM

Simple technology:

- ~10 lithographic layers layers
- passive quenching
- «easily» customizible to application

Analog SiPM

Technology can be optimized in all aspects to get an optimal SPAD.

Digital SiPM

Main Features:

standard CMOS technology

- integration of «intelligence» in the sensor
 - switch off noisy SPADs
 - distributed TDCs for better timing
 - smart validation systems
 - •
- architecture is usually customized to the application
- SPAD sensor is sub-optimal

EXAMPLES Digital SiPM (for PET) - examples

Claudio Piemonte, FBK

17

From high-end applications to consumer

• STM SPAD-based TOF Proximity Sensor

@Chipworks (http://ww2.chipworks.com/e/4202/6180-Time-of-Flight-Sensor-pdf/hwvfs/713665047)

Main characteristics of a SiPM

Claudio Piemonte, FBK

19

Parameters of a SiPM

1) Gain

Number of electrons produced per detected photon

2) Primary Noise (Dark Count Rate [Hz]) Cells firing spontaneously

3) Correlated Noise → excess noise factor (ENF) after-pulsing, optical cross-talk

4) Photo-detection efficiency (PDE)

5) Single Photon Time Resolution (SPTR)

Description of each parameter with reference to an FBK technology: NUV-HD

Claudio Piemonte, FBK

HD technology

- Narrow dead border region \rightarrow High Fill Factor
- Trenches between cells \rightarrow Low Cross-Talk
- Make it simple: 9 lithographic steps

(C. Piemonte et. al., (2016) IEEE T. Electr. Dev., <u>10.1109/TED.2016.2516641</u>)

Claudio Piemonte, FBK

HD: layout features

RRUNO KESSLER

SPAD Pitch	15 µm	20 µm	25 µm	30 µm	35 µm	40 µm
Fill Factor (%)	55	66	73	77	81	83
SPAD/mm ²	4444	2500	1600	1111	816	625
High Dynamic Range			-	High PDE		

Claudio Piemonte, FBK

Gain = number of electrons per photo-carrier generation

Uniformity and stability of V_{BD} is crucial!

SiPM Signal – NO amplifier

Thanks to the large gain it is possible to connect the SiPM directly to the scope

SiPM photon counting capability

\rightarrow gain uniformity in SPAD and SPAD-to-SPAD

SiPM illuminated

T = 20 CSiPM area 1x1mm²

Claudio Piemonte, FBK

V_{BD} Uniformity

Gain uniformity (intra- and inter- device) is mostly affected by Vbd. What is the V_{bd} uniformity?

6" Silicon wafer

1532 3x3mm² SiPMs per wafer SPAD pitch is **35mm** Each SiPM has **6295 SPADs**

Reverse IV measurement on all SiPMs on 3 sample wafers: → Breakdown voltage

V_{BD} Uniformity

V_{BD} Temperature dependence

The mean free path of the carriers in the high-field region increases with decreasing temperature.

Claudio Piemonte, FBK

Dark count rate

Thermal generation (SRH model)

Main source of carrier generation in silicon at room T in standard photodiodes

Tunneling generation

TAT is an important additional contribution in devices relying on impact ionization

DCR measurement

FONDAZIONE BRUNO KESSI FR

Thermostatic Chamber

(C. Piemonte et. al., (2012) IEEE NSS/MIC Conf. Rec., N1-206)

Inter-arrival time histogram

T=70K (example to separate well the components)

Scatter plot of amplitude vs inter-times

DCR event distribution with Poisson fit

DCR / mm² vs. Temperature

NUV-HD 4x4mm² size 25µm SPAD pitch (25600 SPADs)

Claudio Piemonte, FBK

After-pulsing Probability

Carriers may be trapped during an avalanche, released and may triggering another avalanche.

AP measurement

Scatter plot of amplitude vs inter-times

AP in NUV-HD

AP increases with decreasing temperature because the release becomes slower..

Standard field

Low-field

Photons are emitted during an avalanche which may trigger another avalanche in another SPAD

3x10⁻⁵ photons with energy higher than 1.14eV emitted per carrier crossing the junction. [A. Lacaita et al., IEEE TED, vol. 40, n. 3, 1993]

Optical cross-talk

CT measurement

Inter-arrival time histogram

Direct cross-talk

Delayed events

Photo-detection efficiency

$PDE(V, \lambda) = FF \times QE(\lambda) \times T_P(V, \lambda)$

SPAD Fill Factor Quantum Efficiency Triggering Probability

2016 JINST 11 P11010

Claudio Piemonte, FBK

It depends on:

- Anti-reflective coating
- active layer thickness
- junction depth

Claudio Piemonte, FBK

NUV-HD: QE

QE Measured on a photodiode produced with SiPMs +

Simulation of the anti-reflective coating

NUV-HD: QE*Pt

cSPAD (100% Fill Factor)

SPAD size is defined by metal opening which is within the high-field region

NUV-HD: PDE

SPAD Pitch	15 μm	20 µm	25 µm	30 µm	35 µm	40 µm
Fill Factor (%)	55	66	73	77	81	83
SPAD/mm ²	4444	2500	1600	1111	816	625
$35\mu m cell pitch$						
20%		3V				
10%				≥		
0% 300 350 400 450 500 550 600 650 700						
Wavelength (nm)						

Intrinsic Time jitter

Statistical Fluctuations in the current growth:

- 1. Photo-conversion depth
- 2. Vertical Build-up at the very beginning of the avalanche

Single-photon time resolution (SPTR)

- Single-photon time resolution: jitter in time between photon arrival on the SiPM and front end detection of the event
- Typically measured FWHM

Measurement setup for SPTR

• 2-ps width pulsed laser (425nm)

• Set-up time resolution ~ 10ps FWHM

Example of SPTR

- SPAD (50x50um²)
- 1x1mm² SiPM of 50x50um²
- 3x3mm² SiPM of 50x50um²

F. Acerbi, et al IEEE TNS vol. 61, n. 5, 2014, pp. 2678 - 2686

Noise contribution to SPTR

Is the electronic noise the origin of SPTR deterioration moving to large areas?

SPTR: ultimate limit?

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 20, NO. 6, NOVEMBER/DECEMBER 2014

Claudio Piemonte, FBK

53

SPTR: analysis at a single SPAD level

Metal ring all-around active area

- Better signal extraction
- more uniform signal shape
 - Claudio Piemonte, FBK

Main numbers in one table

Parameter	NUV-HD technology 1mm ² 40µm SPAD
DCR (20C)	<100 kHz
Di-CT	<20%
De-CT	<5%
AP (20C)	<5%
PDE	60% (400nm)
SPTR	80 ps FWHM

PMT vs SiPM for NUV light

compactness	\checkmark	1
robustness	\checkmark	1
sensitivity to magnetic fields	\checkmark	1
low operating voltage	\checkmark	1
PDE	\uparrow	1
DCR	\uparrow	\checkmark
dynamic range	\uparrow	\checkmark
SPTR	$\mathbf{\uparrow}$	1
cost	\uparrow	~个
market competition	↓	^ 56

Hot topics in SIPM/SPAD

- High Dynamic Range
- NIR sensitivity

FBK is working on those aspects. UHD technology is an example.

UHD Technology

New design

Reduction of all the feature sizes

Circular active area (smallest cells)

- No corners (with lower field)
- Hexagonal cells arranged in honeycomb configuration

HD technology: small cells

RRIINO KESSI FR

RGB-HD

cell pitch (μm)	cells/mm ²
12	7000
15	4500
20	2500
25	1600
30	1100

RGB-UHD

cell pitch (µm)	cells/mm ²
7.5	20530
10	11550
12	7400

Comparison to other technologies

40 um cell

25 um cell

<7.5 um cell

RGB SiPMs

RGB-HD SiPMs RGB-UHD SiPMs

...new design is not enough...

Border region plays an important role for small cells.

We have to develop a new guard ring (NGR) especially for the smallest SPAD (5um)

F.Acerbi et al., presented at IEEE NSS, Strasbourg 2016

Claudio Piemonte, FBK

61

SEM images

Microcells separated by trenches (picture taken during processing)

Finished SiPM (10 um)

Oscilloscope waveforms

7.5 um cell

10 um cell

The 5um SPAD does not work with the standard guard ring while **it works with NGR!!**

RGB-UHD: PDE

- Optimization of the technology
- Development of even smaller cell size

Claudio Piemonte, FBK

RGB-UHD: Signal

Thanks to all collaborators

Fabio Acerbi Giacomo Borghi Gabriele Faes Nicola Furlan Alberto Gola Marco Marcante Stefano Merzi **Claudio Piemonte** Giovanni Paternoster Antonino Picciotto Veronica Regazzoni Nicola Zorzi

