The Future High Energy Collider (FCC)

Planning after HiLumi LHC

(from a talk of Michael Benedikt, CERN)

Many open questions remaining

Standard model describes known matter, i.e. 5% of the universe!

- what is dark matter?
- what is dark energy?
- why is there more matter than antimatter?
- why do the masses differ by more than 13 orders of magnitude?
- do fundamental forces unify in single field theory?
- what about gravity?
- Is there a "world equation theory of everything"? ...
 K. Borras

galaxy rotation curves, 1933 - Zwicky

FCC Scope: Accelerator and Infrastructure

FCC-hh: 100 TeV pp collider as long-term goal

→ defines infrastructure needs

FCC-ee: e+e- collider, potential intermediate step

HE-LHC: based on FCC-hh technology

Launch R&D on key enabling technologies in dedicated R&D programmes, e.g. 16 Tesla magnet program, cryogenics, SRF technologies and RF power sources

Tunnel infrastructure in Geneva area, linked to CERN accelerator complex; site-specific, as requested by European strategy

FCC SC main magnet options and requirements

27 km, 8.33 T 14 TeV (c.o.m.)

1300 tons NbTi

HE-LHC baseline 27 km, 16 T 26 TeV (c.o.m.)

2500 tons Nb₃Sn

FCC-hh baseline

100 km, 16 T 100 TeV (c.o.m.)

10000 tons Nb₃Sn

FCC-hh

80 km, 20 T

100 TeV (c.o.m.)

2000 tons HTS 8000 tons LTS

CERN Circular Colliders & FCC

Must advance fast now to be ready for the period 2035 – 2040 Goal of phase 1: CDR by end 2018 for next update of European Strategy

Main SC Magnet system FCC (16 T) vs LHC (8.3 T)

FCC

Bore diameter: 50 mm

Dipoles: 4578 units, 14.3 m long, 16 $T \Leftrightarrow \int Bdl \sim 1 MTm$

Stored energy ~ 200 GJ (GigaJoule) ~44 MJ/unit

Quads: 762 magnets, 6.6 m long, 375 T/m

LHC

Bore diameter: 56 mm

Dipoles: 1232 units, 14.3 m long, 8.3 $T \Leftrightarrow \int Bdl \sim 0.15 MTm$

Stored energy ~ 9 GJ (GigaJoule) ~7 MJ/unit

Quads: 392 units, 3.15 m long, 233 T/m

HTS coating for beam screen

Goals: lower FCC-hh beam impedance for stability, while allowing higher beam-screen temperature for efficency

Candidate materials:

TI-1223 (promising performance, opens up >100 K temperature window, scalable coating, R&D with CNR-SPIN and TU-Vienna)

YBCO (proven performance, requires forming technology, R&D with

ICMAB-ALBA-IFAE)

HTS can have surface resistance lower than Cu at T< 77 K and f < 10 GHz

Beyond the LHC: the FCC's

27 km, 8.33 T 14 TeV (c.o.m.) 1300 tons NbTi 0.2 tons HTS 27 km, **20 T**33 TeV (c.o.m.)

3000 tons LTS

700 tons HTS

80 km, **20 T** 100 TeV (c.o.m.) 9000 tons LTS 2000 tons HTS 100 km, **16 T** 100 TeV (c.o.m.) 6000 tons Nb₃Sn 3000 tons Nb-Ti

Nb₃Sn conductor program

Nb₃Sn is one of the major cost & performance factors for

FCC-hh and must be given highest attention

