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introduction to calorimetry

electromagnetic showers

hadronic showers

detector response and compensation

(by far not exhaustive)

Topics (lecture 1 of 2)
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Calorimetry

Name inherited from thermodynamics …
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Calorimetry

Name inherited from thermodynamics …

Q: does this make sense ?

possibly yes …

it works on O(100%) energy absorption

energy → heat
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Calorimetry

Heat ?
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Calorimetry

Heat ?

100 TeV ~ 4 10-9 Cal over tons of material!

not measurable!

→ use some secondary process
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Calorimetry

Secondary processes ? 

What ?
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Calorimetry

Secondary processes ? 

What ?

Typically:

Ionisation
Scintillation light emission
Cherenkov light emission
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Calorimetry

Take care :
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Calorimetry

Take care :

only a very small fraction of the total energy goes
into the secondary process …

How much ?
 << 1 : 103

(even orders of magnitude lower)

… nevertheless :

proportional to the total energy lost !
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Calorimeters

massive detectors for both charged and neutral particles
→ work as well for clusters of particles (i.e. jets)

particles are ~ totally “absorbed”

absorption process known as “shower development”

typically divided into:
1) electromagnetic (“em”) calorimeters
2) hadronic (“had”) calorimeters
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Calorimeters

massive detectors for both charged and neutral particles
→ work as well for clusters of particles (i.e. jets)

particles are ~ totally “absorbed”

absorption process known as “shower development”

typically divided into:
1) electromagnetic (“em”) calorimeters
2) hadronic (“had”) calorimeters

last but not least:
(+) provide (local & global) trigger information
(++) provide particle ID capabilities
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Calorimeters

Missing energy measurements :

4π (em & had) calorimetry coverage

[ “hermeticity” ]
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development driven by em interactions :

→ clean & ~ simple

→ long-range

→ depend on atomic properties

→ atomic number & atomic scale  (~10-10 m)

electromagnetic (em) showers
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development driven by nuclear interactions :

→ complex & ~ hard

→ short-range

→ depend on nuclear properties

→ density of nuclei & nuclear scale (~10-15 m)

hadronic (had) showers
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atom → football field (electron clouds anywhere)

nucleus → 1 mm (static) sand grain at field center

well known for about a century …
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atom → football field (electron clouds anywhere)

nucleus → 1 mm (static) sand grain at field center

→ hadrons need to pass within ~10-15m from nuclei to interact

→ detectors (dimensions, materials) and performance
quite different

well known for about a century …
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Cascade of (e+,e-,γ)) → stochastic process w/ thousands particles

pair production, bremsstrahlung & ionisation

em showers
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Χ
0
 : longitudinal development scale

1 X
0
 : when <1-1/e> (~ 63.2%) of electron energy → brems.

X
0
 [ g/cm2 ] ~ Z-1

radiation length → X
0
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E
c
 : when bremsstrahlung takes 

over ionisation

critical energy → E
c
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E
c
 : when bremsstrahlung takes 

over ionisation

critical energy → E
c

E
c
 [ MeV ] ~ Z-1
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Molière radius → R
M

lateral spread ~ driven by multiple scattering

R
M

 : radius of cylinder containing 90% of shower energy (95% in 2×R
M 

)

→ R
M

 [ g/cm2 ] ~ independent of Z

where :
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compound materials

= fraction by weight of j
th
 element

same for R
M

 :

where :
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photons

High-energy photons → mean free path (pair production) ~ 

at first pair production → 2 electron showers
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photon showers

em shower:
electrons emit photons
photons produce e+e- pairs



Cogne, 12 February 2019 33

1) fractional energy deposition per X
0

2) number of e and  photons (E > 1.5 MeV) crossing planes

em shower development
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electron vs. γ initiated showers
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shower maximum (shower depth):
where multiplication process ~ stops

X
 
~ 1 / Z , ~ log(E)

shower longitudinal dimension mildly grows as log(E) 

… one more parameter
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shower development

longitudinal profiles

e in copper

lateral profiles

10 GeV e-

after shower maximum, lateral spread dominated by isotropic 
processes (Compton scattering, photelectric effect)
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scaling violations

longitudinal profiles (10 GeV e-)

as well due to low-energy phenomena (Compton scattering, 
photoelectric effect) dominating after shower maximum
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energy response

total shower length L ∝ total energy = E
signal S (mainly due to low-energy particles) ∝ L ∝ E

→ linearity

fluctuations :

a 40 GeV shower equivalent to 2 × 20 GeV showers
→ independent fluctuations

→ σ(E) E) ∝ √EE

stochastic term :
σ(E) E)/E =E = a/E =√EE → improves as E-½
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energy resolution

quartz : better UV light transmittance
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sampling calorimeters

usually sandwich of active (e.g. scintillator plates) and 
passive elements (e.g. lead plates)

→ impact on resolution ?

sampling fraction : fraction of energy lost in the active 
medium (by a minimum ionising particle)
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sampling fluctuations

(rough) rule of thumb :

d [ mm ] = thickness of each active layer
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1) homogeneous: 100% of shower track sampled in active medium

→ resolution σ/E ~ O(1%)/√E(GeV)

2) sampling: only part (<~5%) of track sampled in active medium

→ resolution σ/E ~ O(10%)/√E(GeV)

* “typical” values for high-energy physics

em resolution ?
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real em calorimeters
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π0, η0 production → hadronic showers develop 2 main components:

h component: p, n, π±, nuclear fission, … delayed photons, … 

dimension scale : λ
I
 ~ 35 g/cm2 · A1/3

hadronic calorimetry
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on average equivalent to em showers with X
0
 and R

M 
replaced by λ

I
 (nuclear 

interaction length) … but :

single showers by 170 GeV pions

… much much larger event-by-event fluctuations !

hadronic shower development
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→ a factor > ~10 in λ
I
/X

0
 ratio

radiation vs. interaction length
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many components w/ large fluctuations in relative yield

   1. large non-gaussian fluctuations in energy sharing em/non-em
   2. increase of em component with energy
   3. large, non-gaussian fluctuations in “invisible” energy losses

hadronic shower components
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energy fraction carried by π0 (mainly) and ηmainly) and η0

< f
em

> vs. pion energy f
em

 for 150 GeV pions

f
em

, on average, large and energy dependent

fluctuations in f
em

 large and non-poissonian

E0 = average energy to produce a π0

(mainly) and ηk-1) related to average multiplicity

electromagnetic fraction f
em
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 f
em

  fluctuations
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✦ In nuclear reactions energy is lost (mainly) and ηbinding energy) to free protons and 

neutrons

✦ can’t provide any measurable signal (mainly) and ηinvisible energy)

✦ accounts on average for ~ 30-40% of non-em shower energy 

large event-by-event fluctuations limit resolution

Correlation between invisible 

energy and kinetic energy carried 

by released nucleons

Evaporation nucleons: soft 

spectrum, mostly neutrons (mainly) and η2-3 

MeV) 

invisible energy
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Measurement of the  kinetic energy of neutrons - correlated to nuclear 
binding energy loss (invisible energy) - from signal time structure 
(DREAM)

Probing the tot. signal 
distribution with f

n
f
n
 anti-correlated to femSignal time structure

no tail in em showers

invisible energy correlations
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Response:
detected signal per unit energy deposit

 
e.g. number of scintillating (mainly) and ηor Cherenkov) p.e. / deposited GeV

Hadronic showers:
em component → response e
hadronic component → response h

what about the relative ratio e/h ?

detector response
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e ≠ h

e.g. (mainly) and ηright plot): 
only 1/1.8 ≈ 56% of non-πo

energy accounted by signal

Note:
e/h ratio: detector characteristic

typically, ~2 for crystals, in range 1-1.8 for sampling calorimeters

Nevertheless:

1) e/π depends on energy (mainly) and ηf
em

 depends on E and shower “age”)

2) f
em

 different for π,  K, p → response depends of particle type 

detector response to hadronic showers
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e/h = 1 → compensating calorimeter

1) increase h → boost hadron response
e.g. by adding hydrogen or by using Uranium, both acting as 
“neutron converters” → large integration volume and time

2) decrease e → decrease em sampling fraction (i.e. em 
performance) → tune active / passive material ratio 

compensation
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✦ not a guarantee for high resolution

✦ fluctuations in fem are eliminated, but others may be very large

✦ has drawbacks

✦ high-Z absorber required → small e/mip → non linearity @ low energy

✦ low sampling fraction required → em resolution limited

✦ relies on neutrons → integration over large volume and time                  
                    SPACAL 30%/√E needed ~15 tonnes and ~50 ns

✦ high-res em and high-res hadron calorimetry mutually exclusive:

✦ good jet energy resolution  compensation                                             ⇒ compensation                                                 
         small sampling fraction (mainly) and η 3%)  poor em resolution⇒ compensation                                             ⇒ compensation                                             ∼3%) ⇒ poor em resolution

✦ good em resolution  high sampling fraction (mainly) and η100% crystals, 20% LAr) ⇒ compensation                                                 
         large non compensation  poor jet resolution⇒ compensation                                             ⇒ compensation                                             

compensation pros & cons
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* after software compensation 

Energy resolution

real hadronic calorimeters
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What ?

Don’t spoil em resolution to get e/h = 1 (mainly) and ηi.e. keep e/h > 1) BUT 

measure f
em

 event-by-event

         ⟹ correct energy measurements for f
em

 fluctuations

How ?

Exploit the fact that (mainly) and ηe/h) values for scintillation light (mainly) and ηS) and 

Čerenkov light (mainly) and ηČ) production processes are (mainly) and ηvery) different

Why ?

Charged hadrons contribute to S but very marginally to Č

dual-readout calorimetry
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S   =   E · [  f
em

 + (h/e)
S
 · (1 – f

em
) ]   =   E · [  f

em
 + s · (1 – f

em
) ]

C   =   E · [  f
em

 + (h/e)
C
 · (1 – f

em
) ]   =   E · [  f

em
 + c · (1 – f

em
) ]

(h/e)
S
 = s , (h/e)

C
 = c → detector-specific parameters

Both f
em

 and E can be reconstructed:

                        E = (S - χ C) / (1 – χ)

where:

           χ = (1 – s)  / (1 – c) = (E – S) / (E – C)

     → χ can be evaluated from testbeam data

working principles
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to be continued … 
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