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Topics

dual-readout calorimetry

particle flow and longitudinal segmentation

jets

readout and processing

… too much … must skip some parts
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What: 
correct hadronic energy measurements for f

em
 fluctuations

How: 
use two independent sampling processes

with different sensitivity to em and non-em shower components
to reconstruct f

em
 event-by-event

Scintillation light → S signal
Čerenkov light → C signal

dual-readout calorimetry
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S = E × [  f
em

 + (h/e)
S
 × (1 – f

em
) ]

C = E × [  f
em

 + (h/e)
C
 × (1 – f

em
) ]

with (h/e)
S
 and (h/e)

C
 detector specific constants.

Solving the system, both E and f
em

 can be reconstructed:

                         E = (S - χ C) / (1 – χ)

where:

                       χ = (1 – (h/e)
S
)  / (1 – (h/e)

C
) 

                                = (E – S) / (E – C)

→ χ can be extracted from testbeam data

the math
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Č (GeV) vs. S (GeV) C/E vs. S/E

Hadronic data points (S, C) located around straight lines

θ, χ independent of both:

i) energy (!)

ii) type of hadron (!!)

(GeV)

GeV

applying the d.r. approach
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before d.r. corrections
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with d.r. approach
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about χ parameter

Range : 0 < χ < 1 [ (h/e)
C
 < (h/e)

S
 ]

(h/e)
S
 → 1 : χ → 0, θ → 90°, E better resolved

(h/e)
C
 → (h/e)

S
 : χ → 1, θ → 45°, E unresolved
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fibre-sampling dual-readout calorimeters
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the DREAM/RD52 collaboration



Cogne, 13 February 2019 11

Texas Tech Uni

INFN Pavia

INFN Pisa

2003
DREAM

2012
RD52

2012
RD52

Cu: 19 towers, 2 PMT each
2m long, 16.2 cm wide
Sampling fraction: 2%

Cu, 2 modules
Each module: 9.2 × 9.2 × 250 cm3  
Fibers: 1024 S + 1024 C,  8 PMT 
Sampling fraction: ~4.6%
Depth: ~10 λint 

Pb, 9 modules
Each module:  9.2 × 9.2 × 250 cm3  
Fibers: 1024 S + 1024 C,  8 PMT 
Sampling fraction: ~5.3%
Depth: ~10 λint

fibre-sampling dual-readout calorimeters
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Pb  3*3 matrix 

2 Cu modules

RD52 dual-readout fibre calorimeters
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d.r. at work (2)
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d.r. at work (3)

NIM A 866 (2017) 76
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em performance of RD52 calo.s
Signal linearity

Radial shower profile and response uniformity
Pb – S signal
100 GeV e-

Pb
100 GeV e-

NIM A 735 (2014) 130
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NIM A 735 (2014) 130

em performance (copper)

Č and S provide independent shower 
sampling → combine signals

DREAM RD52

Constant term due to fluctuations in interaction 
point (only S). Disappears for larger angles 

40 GeV e-

→ improvement in resolution 
(doubled sampling fraction)
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em resolution

Copper

Lead
Electromagnetic

Resolution

~ 1% at 100 GeV

Lead
~ 2 GeV resolution on m

H
 in the γγ channel
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resolution parametrisation

Normally factorised into either 3 uncorrelated terms :

σ/E = a/√E  ⊕ b ⊕  c/E

or assuming some correlation between first two terms :

σ/E = a/√E + b ⊕  c/E
where :

a → stochastic term
b → constant term

(containment, cracks, non-uniformity,  non-compensation … )
c → electronic noise

but more precise breakdowns are possible
for example lateral containment is better described by a E-¼ term
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resolution relevance ?

Few examples for next future (other than missing energy) :

invariant mass resolution :

H → γγ

→ both energy and spatial (angular) resolution of em calo

invariant mass resolution : 

H, Z → ττ (followed by τ → ρν, ρ → π±π0)
H, Z, W → jj

→ both energy and spatial (3D ?) resolution(s)
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single-particle hadronic resolution

to be corrected for:
      - light attenuation
      - lateral leakage

Hadronic Resolution 
(Pb Module)

jet energy resolution ~ few % at ~100 GeV

(4th Concept Detector LOI quotes 30%/√E for jets)

Hadronic Resolution 
(Pb Module)
Hadronic Resolution 
(Pb Module)

Jet resolution may improve coupled w/ tracking information (high 
granularity → “particle-flow”)
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Geant4 (preliminary) RD52 simulations

W/Z separation
[ H→WW / H→ZZ separation ]

Hadronic Resolution

NIM. A824 (2016) 721 
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particle ID (electron/hadron separation)

NIM A 735 (2014) 120

RD52 lead calorimeter

(60 GeV) e- vs. π-

ε(e-) > 99%
R(π-) ~ 500
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copper vs. lead

lead will have :

a) +60% in detector mass

b) lower e/mip ratio :

→ lower Cherenkov light yield

→ loss of linearity for jets 

e/mip :
~ 0.6 for lead
~ 0.9 for copper
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e/mip ratio

mip : minimum ionising particle → only ionisation

dE/dx (mip) :
lead ~ 12.6 MeV/cm → 7.15 MeV /X

0

copper ~ 12.7 MeV/cm → 18.0 MeV/X
0

( PMMA ~ 2.3 MeV/cm → 78.2 MeV/X
0
 )

Moreover in high-Z absorbers :

Z5 dependence of photoelectric effect 
→ most soft-γ interact in absorber

photoelectrons have very short range
→ will contribute to signal only close to boundaries

→ response to em showers suppressed wrt. mips
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e/mip ratio

γ/mip ratio for 
U (3 mm) / PMMA (2.5 mm)
sampling calorimeter

e/mip ratio with Z



Cogne, 13 February 2019 26

e/mip ratio

e/mip ratio as a function of absorber (U)  plate thickness
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mip sampling fraction

analytically calculable … mip <dE/dx> values tabulated

e.g.:
LAr (2.5 mm depth) + U (3 mm depth)

LAr <dE/dx> = 2.105 MeV/cm
2.105 × 2.5 = 5.262 MeV

U <dE/dx> = 20.49 MeV/cm
20.49 × 3 = 61.47 MeV

sampling fraction = 5.262 / (5.262 + 61.47) = 7.9%
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e/π ratio

calorimeter response to π :

→ 

response to π as function of E
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low-energy hadrons

finally :

response of (compensating) ZEUS calorimeter to low-energy hadrons
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jets

Jets:
high-energy core
low-energy hadron tails

fluctuations among them 
low-energy hadrons ~ mip.s

→ mip response must be considered
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transition to SiPM (single-fibre) readout

SiPM + :
  - compact readout (no fibres sticking out)
  - longitudinal segmentation possible
  - operation in magnetic field
  - larger light yield (main limitation to Čerenkov signal)
  - high readout granularity → particle flow “friendly”
  - photon counting (calibration)

 
 

SiPM - :
  - signal saturation (digital light detector)
  - cross talk between Čerenkov and scintillation signals
  - dynamic range
  - instrumental effects (stability, afterpulsing, ...)
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Brass module, dimensions: ~ 112 cm long, 12 x 12 mm2

RD52 SiPM module

32 (S) + 32 (Č) fibres
X

0
 ~ 29 mm

R
M
 ~ 31 mm

 
~ (0.4 R

M
)2 × 39 X

0

shower cont.  ~ 45%
f
sampl 

~ 5-6%

Light sensors (SiPM)
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lateral shower profile w/ SiPM

em shower are very narrow:

~10% (~50%) within ~1 (~10) mm from shower axis
→ fibre readout can easily provide (powerful) input to PFA

10 / 40 GeV e-

θ, Φ = 0°

TB Data Geant4
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2D SiPM imaging

Geant4 single-particle simulations
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Cherenkov signal

Č signal/GeV vs. E

~28.4 fired cells / GeV
⇒

~60 p.e. / GeV @ full containment

<<<<<<<<<<<<<<<<<<<<<<<<
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w/ scintillation light filtering:

attenuation factor ~ 77
(yellow filter)

yellow filter → increase 
attenuation length

scintillation signal
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… about attenuation length

Two remarks:

1) yellow filters increase attenuation length
 2) timing measurement may allow for corrections,

if needed

Č signal < Č signal >
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readout granularity (channel grouping)

tune readout granularity by analogically grouping (i.e. 
adding) channels

tests done with 
1, 2, 4, 6, 9 SiPM.s

It works! May reasonably think at 2×2, 2×3, 2×4, 3×3 ... 
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Geant4 - 20 GeV electron shower containment

containment .vs. impact point

centered events: ~43% containment

parallel to beam tilted in both planes

(all plots for copper unless specified differently)

total energy lost (MeV)

RD52 testbeam module: 1.014 x 1.014 x 112.30 cm3

e.m. calorimeter: 31.4 x 31.4 x 112.30 cm3

containment > 99%
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Geant4 - e.m. energy reconstruction (Cu)

energy reconstructed
80 GeV electrons

Č only S only

S+Č

σ/E ~ 2.0% σ/E ~ 2.3%

σ/E ~ 1.5%

e.m. calorimeter: 31.4 x 31.4 x 112.30 cm3

containment >~99%
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Geant4 - sampling fraction (Cu)

E(MeV) in fibres:  ~6.2%

E(MeV) S fibres: ~5.5% E (MeV) in hottest fibre

E (MeV) in hottest fibre

S S

ČČ

e.m. calorimeter: 31.4 x 31.4 x 112.30 cm3

containment >~99%

C vs. S
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Geant4 – e.m. performance (Cu)

radial profiles @ 10 GeV

# of Čerenkov p.e. @ 60 GeV

e.m. calorimeter: 31.4 x 31.4 x 112.30 cm3

containment >~99%
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Geant4 – signal fluctuations

Scintillation

Energy deposition and p.e. number fluctuations

S: ~5500 p.e. / GeV
→σ/E driven by fluctuations in en. depositions

Č: ~110 p.e. / GeV
→σ/E driven by fluctuations in p.e. number

Sampling fluctuations contribution to resolution:

σ/E

ČerenkovScintillation

σ/E

1/√E 1/√E

Resolution vs. 1/√E(GeV)Resolution vs. 1/√E(GeV)
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S-only: 10.5/√E+1.1 (%)

Č-only: 17.9/√E (%)

(unweighted) average: 10.3/√E+0.3 (%)

Geant4 – e.m. resolution(s)
Resolution vs. 1/√E(GeV)

1/√E

σ/E

Č

S

Č+S
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Geant4 - hadronic shower simulations

Dimensions:
71 x 71 units

1 unit: 
1.014 x 1.014 x 250 cm3 copper module
32 (S) + 32 (Č) fibres
SiPM readout

Containment: ~99%

Calibration of both S and Č w/ 40 GeV e-

*** Preliminary results! ***
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Geant4 - hadronic performance (preliminary)
E(Č) vs. f

em E(S) vs. f
em

E(Č) vs. E(S) E (DR)

80 GeV π- 80 GeV π-

Copper
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Geant4 – Cu hadronic performance (preliminary)

Č: ~73/√E + 6.6 (%)
S: ~30/√E + 2.4 (%)

DR: ~34/√E (%)

σ/E

Resolution vs. 1/√E(GeV)σ/E

1/√E

Resolution vs. E(GeV)

E

Č

S

DR

High-energy single-π resolutions:

σ/E(100 GeV) ~ 3.5%
σ/E(300 GeV) ~ 2.3%
σ/E(1000 GeV) ~1.7 %

DR
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A non exhaustive list:

1) absorber (copper, lead, iron, ...)

2) longitudinal segmentation

3) alternative approaches (i.e. tiles vs. fibres)

4) front-end electronics (ASIC)

5) feature extraction

6) jets calibration and energy reconstruction

many open issues ...
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absorber : active volume = 62 : 38

Iron Brass (Cu260) Lead

ρ (gr/cm3) 5.31 5.71 7.46

λ
N
 (cm) 23.7 23.3 24.7

χ
0
 (cm) 2.75 2.35 0.9

R
M
 (cm) 2.48 2.38 2.32

ρ × λ
N

3  (kg) 71 72 113

λ
N
 : χ

0 8.6 9.9 27.6

Lead:

(-) ~ 60% more mass

(+) a factor of ~ 3 in 
longitudinal separation of em 
and hadronic showers

absorber choice
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Geant4 – h/e and χ factors

f
em

 = MC truth (total energy deposited by e+ and e-)

E = average contained energy
C, S = signals

either:
f

em
→0 : C/E, S/E → (h/e)

or:
(h/e)

Č
 = (C/E – f

em
) / (1 – f

em
)

(h/e)
S
 = (S/E – f

em
) / (1 – f

em
)

while:
χ = ( 1 – (h/e)

S 
) / (1 – (h/e)

Č 
) = (E – S) / (E – C) 
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Geant4 – h/e factors for Copper

(h/e)
Č

(h/e)
Č
 ≈ 0.35 

(h/e)
S
 ≈ 0.75 

Copper

(h/e)
Č

(h/e)
S

(h/e)
S

20 GeV proton

20 GeV proton 80 GeV proton

80 GeV proton
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Geant4 – h/e factors for Lead

(h/e)
Č
 ≈ 0.26 

(h/e)
S
 ≈ 0.78 

Lead

(h/e)
Č(h/e)

Č

(h/e)
S

(h/e)
S

80 GeV proton

80 GeV proton

20 GeV proton

20 GeV proton
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Geant4 – χ factors for Copper and Lead

χ
Cu

 ≈ 0.39

χ
Pb

 ≈ 0.30

Copper

Lead

20 GeV proton

χ
Cu

20 GeV proton

χ
Cu

80 GeV proton

χ
Pb

80 GeV proton

χ
Pb

20 GeV proton
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Geant4 – (h/e) and χ factors

χ
Pb

 ≈ 0.30

χ
Cu

χ
Pb

χ
Cu

 ≈ 0.39(h/e)
Č
 ≈ 0.35 

(h/e)
Č

(h/e)
S

(h/e)
S
 ≈ 0.75 

(h/e)
Č (h/e)

S

(h/e)
S
 ≈ 0.78 

80 GeV protons in Copper ↑ & Lead ↓

(h/e)
Č
 ≈ 0.26 

Copper → 

Lead → 
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low-energy performance - Copper vs. Lead

Energy deposited in scintillating fibres

300 MeV e-

Cu

300 MeV e-

Pb

300 MeV π-

Cu

300 MeV π-

Pb
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invisible energy (50 GeV π-) - correlations

Cu: f(inv) vs. f(p)

Corr ~ 62 ± 1 %

Cu: f(inv) vs. f(n)

Corr ~ 66 ± 1 %

Cu: f(inv) vs. 1-f(em)

Corr ~ 90 ± 0 %

Fe: f(inv) vs. f(p)

Corr ~ 62 ± 1 %

Fe: f(inv) vs. f(n)

Corr ~ 67 ± 1 %

Fe: f(inv) vs. 1-f(em)

Corr ~ 92 ± 0 %

Pb: f(inv) vs. f(p)

Corr ~ 60 ± 1 %

Pb: f(inv) vs. f(n)

Corr ~ 76 ± 0 %

Pb: f(inv) vs. 1-f(em)

Corr ~ 94 ± 0 %

Copper

Iron

Lead

f(E)
proton

f(E)
neutron

1 - f
em
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particle Id & W/Z - copper vs. lead

C/S ratio for 80 GeV e- and p Multiple hadrons, 81 & 91 GeV

Copper

Lead

R(p) ~ 50 
for ε(e) ~ 98%

R(p) ~ 600 
for ε(e) ~ 98%
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χ : the lower the better ...

Hadronic resolution vs. χ

em performance ~ almost unaffected 
(dominated by sampling fluctuations)

hadronic performance 
(dual-readout formula):

take care: ideal, perfect, Geant4 detector

impact on performance



Cogne, 13 February 2019 59

… a new way for energy reconstruction

Reconstruct energy with:

Machine Learning:
- create a calibration DB of events with C, S, E values
- search the closest (C, S) (really C/S) events → get E

→ allows calibration with hadrons
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DR vs. ML

DR ML
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ML performance

→ almost independent of absorber material

→ do NOT take too seriously absolute values !

→ may provide a powerful tool for calibration and stability

Hadronic resolution:

Geant4 – Very Very Preliminary

stochastic constant

iron 20 % 2 %

brass 22 % 2 %

lead 22 % 1 %

tungsten 23 % 1 %

platinum 23 % 1 %
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last but not least ...

Magnetic field homogeneity → IRON

Lead absorber → forward with Iron

forward only → almost as good as with full iron
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4π Simulations

Dual-readout calorimeter description for CepC/FCCee simulation sw:

a) full coverage
b) projective geometry
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Wedge Geometry

Čerenkov light yield set to 30 p.e./GeV
Calibrated w/ 20 GeV e- beam @ [1º, 1.5º ]



Cogne, 13 February 2019 65

em Performance

σ/E ~ 14.0% / √E + 0.1%
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had Performance

σ/E ~ 26% / √E + 1%

E(rec)/E(beam) ~ 92% ± 1%
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particle flow approach

all (shower) particles and energy deposits tracked

requires separation of em and hadronic shower 
deposits for jets (and τ-jets)

→ needs some longitudinal segmentation
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particle flow ?

- high-precision tracking (and em calo)
- measure charged particle in tracker
- remove corresponding energy clusters
- calorimetry to only account for neutrals
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particle flow
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d.r. calo longitudinal segmentation

of course possible: 
- one (lead ?) em compartment
- one (or more) (iron or copper ?) had comp.
- could be separately optimised

Drawbacks:
- complexity and cost

(powering, cooling, readout, ...)

alternative: fibres w/ 2-3 different lengths ?
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different-length (staggered) fibres ?

(at least) 4 kind of fibres:

S-short, S-long, 
C-short, C-long

short fibres → hadronic compartment(s)
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2018 staggered-fibre prototype

(9.3 × 9.3 × 250 cm3) lead module → 4 towers → 16 readout signals

2018 
testbeam:

Pedestal
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tiles vs. fibres

→ + tiles : fully tunable longitudinal segmentation
→ + tiles : no attenuation length issues
→ + tiles : no fibre-to-fibre fluctuation issues
→ + tiles : simpler and cheaper

→ + fibres : lateral segmentation
→ + fibres : highly homogeneous and compact
→ + fibres : higher sampling frequency

→ lower sampling fraction - f
samp

→ lower volume

σ
samp

 ~ 2.7% × √(d/f
samp

) :

σ
samp

 ~ 10% ⇔ f
samp

 ~ 7% × d(mm)
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RD52 tile prototype

Č light yield ~ 50 p.e. / GeV … interesting … but … 

    absorber : active volume = 27 : 73 = ~ 0.4
(vs. ~ 2 in RD52 lead matrix)
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but ...

what the most probing benchmark for 
longitudinal segmentation ?
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the τ± → ρ±υ → π±π0υ case

min Δ(π+,γ) @ 2 m

Z → τ+τ-

τ+ →  ρ+υ → π+π0υ

Δγ @ 2 m

At a “naive” simulation, energy deposits look 
distinguishable

→ to be assessed w/ realistic detector simulations
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for B = 2 T , R
cal

 = 2.5 m , charged particles will impact 

calorimeter with angle:

α = R
cal

 / (2 × R
bend

) = ~ 2.5 / (2 × P
T
 / 0.6) 

= ~ 750 mrad / P
T

10 GeV (P
T
) charged tracks, after 60 cm, displaced by ~ 4.5 cm

→ issues only with neutral hadrons (K
L
, n) ?

moreover … B field impact
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machine learning for jets
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simplified jet structure

Jet Energy Fraction 

charged

neutral

45 GeV Jets

pr
el

im
in

ar
y

pr
el

im
in

ar
y

neutral

charged

Jet Multiplicity
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simplified jet structure

Number of fragments / GeV / Jet

45 GeV Jets

pr
el

im
in

ar
y
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simplified jet structure

pr
el

im
in

ar
y
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reconstructed energy

pr
el

im
in

ar
y

pr
el

im
in

ar
y



Cogne, 13 February 2019 83

energy resolution

pr
el

im
in

ar
y

pr
el

im
in

ar
y
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first step: ASIC

would like to get:

SiPM

ASIC

FPGA
USB

few words on front-end electronics
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readout open ways

Possible solutions:

a) analog charge integration : e.g. SPIROC

~ 2000 p.e. dynamic range
~ 100 ps time resolution

b) digital sampling : e.g. AARDVARC

10-15 Gs/s
< ~ 5 ps time resolution

         it looks like an overkill

[ Δx ~ 5 cm ⇒ Δt ~ 100 ps ]



Cogne, 13 February 2019 86

declared to provide ~40-80 ps timing accuracy

… better tuned digital solution ?

[ Δx ~ 5 cm ⇒ Δt ~ 100 ps ]
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feature extraction 
(FPGA real-time processor)

May likely provide :

                a) total charge Q
T

b) starting time T
S

c) time over threshold ToT
d) peaking time T

p

e) peak value V
p

f) or maybe Q
1
 (T

1
), Q

2
 (T

2
), Q

3
 (T

3
) … 

(either single deposit or fixed time slices)

time structure carries information on longitudinal segmentation
(particularly true for Čerenkov signal)

[ Δx ~ 5 cm ⇒ Δt ~ 100 ps ]
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Conclusions

Many items lacking :

calibrations likely the most important (and critical) 

But also :

homogeneous calorimeters
real (non-perfect) detector implementations
timing properties
trigger performance
active media
muon signals, light collection, photodetectors, radiation hardness,
...

a more rigorous approach to most issues (!)
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Conclusions

Apologies for that !

(fine … there is room for improvements)

reference :

Calorimetry
Energy Measurements in Particle Physics

R. Wigmans
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